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1. Introduction

In this paper we consider a family of completely additive functions 8 =
= f, and, through the application of existing theorems in probabilistic number
theory, determine the global distribution of 8(n), 8(p + 1) and B2(n% + 1). In
addition we determine the mean value of 3(n? + a).

For each prime ¢ the functions 8 = 3, are defined by

k when ¢*||(p +1),
1) Bp) =
0 when{g,p+1)=1;

(1.1)
i) B(n)= ¥ aB(p).
pe|ln

As is the case for the well known functions w and €2, the values of 3 are
nonnegative. But in contrast there are many primes p for which 8(p) = 0 while
there also exist primes with the property that 8(p) = (logp)/(loggq). It is this
last property which requires one to use sieve methods and estimates for the
number of primes in arithmetic progressions with moduli of the form ¢*.

In what follows the letters p and ¢ refer to primes, the letter € denotes

a small positive number. If we let N;y(n;...) denote the number of positive

integers not exceeding r which have the property ... then vg(n;...) =

[2]7! Ng(n;...). Similarly if N.(p;...) denotes the number of positive primes

not exceeding z with the property ... then v(p;...) := [7(z)]™} Nz(p;...).
F4

The standard Gaussian law L / e~t’/24 is denoted by ®(z). Furthermore
V2rn
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for k > 2, log; ¢ = log(log; _, z) indicates the iterated logarithm. In general
the letter ¢ will denote an arbitrary constant, not the same in each instance.
With this notation we will prove the following three distribution results for the
function g = 3,.

Let ¢; and ¢, be two constants with values

(1.2) €= ———
then
Theorem 1. For any real number 2z

ve(n; B(n) — ¢ logy z < z(cplog, 2)'/?) — &(z) (z — ).

Theorem 2. For any real number 2

ve(p; B(p+1) = c1log, z < 2(czlogy 2)'/?) — &(2) (2 — ).

Theorem 3. For 8 = 32 and any real number z
ve(n; B(n? + 1)logy 2 < 2(logy 2)/2) — B(z) (2 — o).

The mean value which we obtain can be stated as

Theorem 4. For a positive integer a and 3 = f3,

(211 Y B(n? + ) = Clogy 2(1 + o(1))

n<z
1 whena=1 and g = 2,
where C = q
(g—a)?

Before 1 end this introduction I must express my deep gratitude to
Professor I. Katai who suggested this work and supported me with much needed
advice and encouragement.

otherwise.




The value distribution of an additive function 281

2. Some preliminary lemmas

We begin by determining the quantities

(2.1) A(z) := Z E(pl) and fB%(z):= Z ﬁz(P)

p<z p<z

In order to do this we need an estimate for the number of primes in arithmetical
progressions with moduli ¢* which holds uniformly for ¢* < z!/3. From work
by Iwaniec [5] the following estimate can be obtained.

Let P be a finite set of primes and D = {D =11 p* a> 0} be a set of
PEP

integers. For (1, D) = 1 and a fixed constant ¢ the estimate

(2.2) n(z,D,1) = {1 + O(exp(—c+y/log z))}

<15(D)l
holds uniformly for D € D and D < z!/3.
We can now prove
Lemma 1. For fized q and k the estimate
1 log,z (k log q)
- = +0
DT ¢
pm—1(mod ¢k)

holds uniformly for ¢* < z1/3.

Proof. In order to use (2.2), we distunguish between small and large
primes and write

(2.3) >

psx
p=—1(mod q")

Z + Z -_51+Sz,

p<q3k 3k<P<£

'Bl'—-

where the same congruence condition holds in all sums. Since p+ 1 = ng* and

1 < —2— it follows that
—p+1

p

lclog a

2 ~ 1
(2.4) <F T <8
n<q¢?
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To evaluate S, we use partial summation and (2.2). Then

z
1 k 7r(:c,q",—1)
(25) Szz/?w(u,q ,-—1)du+—z—-— =
qsk
z
u
= ————-——du+E._— log, z — log, ¢°F) + E.
/‘:u2]og ud(q*) #(¢F )( 82 829")
q!

For ¢* < £!/3

z

E:O{/Wexp( c\/l_c;a)du} (:,_4,:,:1_22

qu

(2.6) = o{m}.

Combining (2.3), (2.4), (2.5) and (2.6) the lemma follows. :
It is now easy to obtain the first three moments of 3(n).
Lemma 2. For q fized and ¢; = -
k=1

Z -ﬂ% = ¢jlogy ¢ + O(1).

p<z

Proof. Let N be a large integer with ¢V < z'/3. Then

zﬂ’(”) Zk121+ v fj—lgﬂzsl+sz.

p<z p<= p p<x
a*lip+1 p=-1(mod ¢N)
To evaluate S; we observe that ¢*||p + 1 means that p = —1(mod ¢*) and

p = —1(mod ¢**1). Since B(p) < logz application of Lemma 1 results in

L '°52’”(¢(qk) ¢(q'1=+1)) +0<§"j%)

k=1 k=1
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i (logyz (Nlog q))
and 53 < lo ( +0|——1)].
2 < log’ 2| Zomy &

Choosing N such that ¢V = [(log z)/*!] it follows that

S1 =cjlogaz+0(1) and S, =o(1).
In particular Lemma 2 estabilishes that

gl¢g+1)

Alz) = (g—-1)3

>log,z+O(1) and B?*(z) =

_—(q—ql) log, z + O(1).

Lemma 3. If x is a quadratic character modulo a and (a,q) =1 then

T o[t

p<=
pE~—1(mod k)

where the tmplied O constant depends upon a.

Proof. By the Chinese Remainder Theorem there exist integers ry, rs,
vy Tg(a)/2> M1,---,Ng(a)/2 Such that

+1 if p=r; (mod ag*),
x(p) =

-1 if p=n; (mod ag*).

Therefore
#(a)/2
x(p) _ 1 1
> hTh| & v &b
pm—1(mod g¢k) pmr,;(mod agk) pEn;(mod agk)

Evaluating the inner sums on the right hand side as in Lemma 2 using (2.2)
we obtain the lemma.

For each polynomial f(n) the multiplicative function p = p; is defined on
the positive integers by

(27) pd)= Y L

J(n)=0(mod d)
1<n<d

It i1s well known that

E pp) = tlog, z + Oy(1)

p<z
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where t is the number of irreducible components of f(n). A comparable
estimate holds for the irreducible polynomial f(n) = n? + a when the sum
is restricted to primes p = —1(mod ¢*).

Lemma 4. Let f(n) = n? + a where a is a positive integer. For a > 1
and allg ora=1and ¢ > 2

p(p) log,z (lc log q)
= +0 .
; P (") ¢t
pE—1(mod 'h)

Proof. Since p(p) =1+ (-’p—") when f(n) = n? +a it follows from Lemma

1 that it is sufficient to show

(2.8) Z (_Ta) -0 (klog q).

p q

p<=x
p=—1(mod q“)

Without loss of generality it may be assumed that a is squarefree.

For a = 1 the Jacobi symbol ('T") = (_Tl) is a quadratic character
modulo 4. Since ¢ # 2, (2.8) follows from Lemma 3.

For a > 1 and odd we apply the law of quadratic reciprocity and obtain
('T") = (—1)(“‘1)/2(5) which is a quadratic character modulo a. When

(a,q) = 1 the result follows from Lemma 3. When a = ¢b and p = —1(mod ¢*)

(5)= ()} =G ()=o),

which is a quadratic character modulo b and since (b,q) = 1 Lemma 3 gives

the result in this case also.
When a is even (Z’;“—) = (%) (—Tb) which is a quadratic character modulo
8b. If (¢, 8b) = 1 one can apply Lemma 3 and (2.8) follows. The case (¢, 8b) > 1

is left to the reader.
The following lemma is analogous to Lemma 2.

Lemma 5. For f(n) = n? + a the sum

ZM = ¢ 10521?+0(1)

p<z
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1 whena =1 and ¢ = 2,

oo kI
> — otherwise.
k=19

where ¢; =

Proof. When a=1and ¢ =2, p(p) =1iff p =1 (mod 4). In this case
B(p) = 1. Therefore by Lemma 1

> ﬂ’(pzp(p) .

p<z

- N RN

= log, z + O(1).

p<=
pE1l(mod 4¢)

In all other cases the proof follows from Lemma 4 and is left to the reader.
3. Proofs of distribution results

The theorems will be established by verifying that existing results in
probabilistic number theory apply to the function 8(n), which will not be too
difficult due to Lemma 2 and 5.

Proof of Theorem 1. In [2] we find a result due to Kubilius and Shapiro
which reads:

Let f(n) be a strongly additive function (i.e. f(p®) = f(p) for all a > 1)
and define

2 1/2
(3.1) A(@:Z% and B(z)=(ZfT@) > 0.

p<z p<z

Ifforalle >0

(3.2) le(z) ) i-p(’;) 20 (z— o)

p<x
12(»)1>eB(x)

then for every real number 2
Ve ( f(n) - A(z) < 2 B(z)) —~®(z) (z— o).

This result can easily be extended to additive functions when B(z) is
unbounded, which is the case for the function f(n). Since B(p) > 0, the fact
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that condition (3.2) holds for 8(n) follows by applying Lemma 2 which results

mn
1 PE) _ 1 ) gz
@ L @A p € omo

p<=x
18(p)|>eB(x)

Because ®(z) is continuous and B(z) is unbounded A(z) and B(z) can be

replaced by (—q_z_l) log, z and (t(lgq—-*-l;g

1/2
log, :r:) respectively and Theorem
1 follows.

Proof of Theorem 2. The Kubilius class H is defined to be the set of
strongly additive functions with the property that for all y > 0

B(zY)

(3.3) B

=1 (z— 00).

The distribution result for 3(n) on the shifted primes now follows from a result
by Barban, Vinogradov and Linnik [1] which can be stated as follows.

Let f(n) be in the Kubilius class H and A(z) and B(z) defined as in (3.1).
If

1 2
(3.4) e Z: L;EL)_'{

1(p)<uB(x)

1 foru>0

0 foru<O

then for each real number z
ve(f(p+1) - A(2) < 2 B(2)) = ®(z) (2 — 0).

For B(n) the condition (3.3) obviously holds. Again, since B(z) is
unbounded, the fact that #(n) is not strongly additive does not matter. Finally
condition (3.4) is also satisfied because f(p) > 0 for all p. This means that
for u < 0 the limit in (3.4) is obviously 0 while for u > 0 condition (3.4) is
equivalent to (3.2). Again, since ®(z) is continuous and B(z) is unbounded,
Theorem 2 can be inferred.

Proof of Theorem 3. A result of Halberstam [3] can be stated as follows:

Let f(n) be a strongly additive function with f(0) = 0. Let h(n) be a
polynomial in Z[z] and p = pj be defined by (2.7). Define

zmn=zym%?

p<=z
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Bi(z) = (Zp(p)@)l/z >0,

ps:t
pz = max | f(p) | Bi(z)™".
p<=z
If
(3.5) (assuming that By(z) > 0) pr —0asz— oo

then for all real numbers z

Vz (f(h(n)) - Ai(2) < zBl(z)) — ®(z) as z — oo.

For unbounded Bj(z) this result can be extended to all additive functions.
When h(n) = n2+ 1 and f(n) = B(n) = P2(n) it can be seen from Lemma 5
that

Ay(2) = Bi(z) = logy z + O(1).

Since B2(p) can be as large as (log p)/(log 2) it seems that condition (3.5)
is not satisfied. This can be easily overcome by defining

B(p) when p=1 (mod 4),
(3.6) g (p) = {

0 otherwise.

Hence the theorem of Halberstam can be applied to 8*(n) but since n? +1 =
= 0 (mod p) only has solutions if p = 1 (mod 4) the values of f(n? + 1) and
B*(n? + 1) are the same for all n and Theorem 3 follows immediately.

4. Proof of Theorem 4

While in Theorem 3 we applied the restriction a = 1 and ¢ = 2, no such
restriction is necessary when we consider the mean value of #(n? + a). For any
positive integer a the sum

S= Y A(n?+a)=
n<r
=S|+ X e[ X+ T e
p<z p po*<xi4a p z<p<zlogzr

a>2
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+ Y pp)B(P) = S+ S2 4+ S3 + Sa.

zlogz<p<z3ta

Taking j = 1 in Lemma 5 we obtain the main term of S namely

@y  si=e B0 o sp)ite) =C 2 logy 2+ 0)

p<z p<z

1 whena =1 and ¢ =2,
where C = q
(¢-1)?
Since p(p*) < 4 and B(p) < log p it follows that

otherwise.

log =

(4.2) S2< Y logp Z 2 gz Z l°g” = O(z).

p3<z3+a

When evaluating S3 we observe that f(p) < 2logz and choose an integer K
such that ¢¥ = [z%) with 0 < 6 < 1. Then

K
(4.3) Sa<Y kY l4lgz Y 1<
k=1

z<p<xlogx z<plxlog s
pm—1 (mod gk) pm—1 (mod ¢K+1)

K
<Zk'1r(zlogz,q",—l)+log z-n(zlogz,¢¥+! —1) = O(z).
k=1

To evaluate S; we choose m = (logzz)? and M = 4log,z and set Sy =
=31+ .+ 3 In ), we consider only those primes for which f(p) < m,
in ), the primes for which m < B(p) < M are considered and in ) ,, the
remaining primes in the interval [zlogz, z? + a].

Since there are at most z large primes p with p(p) # 0,

(4.4) Zl < 2mz = 2z(logz z)*.

In }", we replace B(p) by log z so that

zagﬂog z Z 1.

= log :<'522+.
pE—1(mod qM)
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For n? +a = vP, P = —1(mod ¢™) and P > zlogz it follows that v <
< z/logz, n? +a = —v(mod v¢M) and P > ¢M. Therefore
(4.5) Za L log z Z p(VqM)[LM] <

v<z/logz Ve

1 2
< 75:: Z p(v) < z(loilz) = o(2).
1 v<z/logz ?

To find an upper bound for 3, we replace S(p) by M so that

D, EM Y b

z log z<r$:’+o
pE—1(mod ¢™)

Hence an upper bound is obtained when we can find an upper estimate for the
number of integers n < z with the property

(4.6) n’+a=vP, P =-1(mod ¢™) and v < z/logz.
For such n
(4.7 n? + a = —v (mod vq™).

For a fixed v let ng be a solution to (4.7). Since (ng + tr¢g™) is also a solution
to (4.7) it follows that

f@) = (ng +trg™)? + a = v2¢?™t% + 2novg™t + n2 + a = —v (mod vq™).

From (4.7) it can be seen that the coefficients of the polynomial F(t) = f(t)/v
are integers. When F(t) = P, a prime, then P = —1 (mod ¢™) and there is
some n, n = ng + trqg™, such that n? + a = vP with P = —1 (mod ¢™).

Let N, = ﬂ{t < =z ‘ F(t) is a prime } Then
vqm
(48) Zs <M P(qu)' N,.
v<z/logz

An upper bound for N, can be given by applying Theorem 5.4 in [4] from which
it follows that

(4.9) N, <Cfr Y 1+ 0F <logﬂ) } where y = =z
log Y log y vqm™
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Before the estimate (4.9) can be used in (4.8) it is necessary to investigate the
dependence of the constants upon F(t)

The constant Cp = Hl p(p , where p(p) = pr(p). It is not hard

to show that pr(p) = p;,(p) except when p is a divisor of v and pn(p) = 2, in
which case pr(p) = 1. Hence it follows that

where C is independent of the polynomial F. The implied O constant also
depends upon F(t) through pr(p). From the proof of (4.9) it can be seen that
replacing pp with pp will introduce at most a finite power of log, z. Hence it
follows that

zlog, x
<M. m <
2, 2 A e o)

v<z[logz
(4.10) < M Z A
" TR vlog(z/vq™)

To estimate the inner sum let

- j meety= ]| 2 -
Li={v|e <z/vg" <e }‘{"}qmei+lsu<qmef}_

={v|T<v<eT} with Tzq':eJ and 1< j<log z.

Then

(4.11) Z <<I(10823) Z Z P(V x(logzl) = o(z).

i=1 T<u/eT q

From (4.4), and (4.11) it follows that S4 < z(logz z)? from which Theorem 4
now follows.
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