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ONE-PARAMETER MARTINGALE INEQUALITIES

F. Weisz (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on occasion of his fiftieth birthday

Abstract. Inequalities and duality results with respect to martingales
are summarized. A new Davis decomposition is given by the help of
which a new proof of Davis’s inequality is obtained. It is proved that the
usually considered martingale Hardy norms are all equivalent for previsible
martingales. If the stochastic basis is regular then all the five Hardy spaces
that are to be investigated in this paper are equivalent. Davis decomposition
is applied to present a new proof of the duality between the martingale
Hardy space Hy and BMO. As a consequence, we obtain an inequality
due to Rosenthal and Burkholder. Inequalities between BMO, L, and
Hardy spaces are verified. Finally, it is shown that the dual of VMO is a
martingale Hardy space.

1. Introduction

In this paper several known martingale inequalities and duality theorems
relative to the martingale Hardy spaces are summarized and some new results
are proved.

The classical Hardy space RH, is equivalent to L, for 1 < p < oo, the
dual space of RH; is BM O and the dual of VMO is ®H; (see Coifman, Weiss
[5]). These results are true for martingale Hardy spaces, too.

Burkholder and Gundy [2], [3], [4] have proved that the martingale Hardy
spaces H;f and H generated by the L, norm of the quadratic variation and of
the maximal function, respectively, are equivalent to L, whenever 1 < p < oo
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(see Theorems 1 and 2). A few years later Davis [6] extended this result to the
case p = 1 (Theorem 4). The dual of H{ was identified with BMO; space by
Garsia [9] and Herz [11] in 1973 (Corollary 5). The duality between VMO
and H{ was proved by Schipp [18] for dyadic martingales.

We are to define three other martingale Hardy spaces: H, space generated
by the L, norm of the conditional quadratic variation, P, space of the
predictable martingales and Q, space of the martingales with predictable
quadratic variation.

In Section 3 the connection between these five martingale Hardy spaces is
considered. Several known martingale inequalities are given. In Theorem 3 the
relations Hy C H;,HPS (0 < p <2) as well as H;,H;f CHy (2<p<o)and
Py, Qp C Hp, H,;g, H3 (0 < p < 00) are given (see Weisz [22]). A generalization
of Davis’s decomposition is demonstrated. With the help of P, and Q, spaces
martingales from H; and HPS are decomposed into the sum of two martingales,
one from G, and one from H; (1 < p < o) (Lemma 3). G, space was introduced
by Garsia [9] as the L, norm of the {; norm of the martingale differences. With
the help of this new Davis decomposition a new and simpler proof of Davis’s
inequality is given (see Theorem 4). The counterexample due to Marczinkiewicz
and Zygmund [13] shows that Burkholder-Davis-Gundy’s inequality does not
hold in general for 0 < p < 1 (see Proposition 1).

The concept of the previsible martingales is generalized (cf. Burkholder,
Gundy [2], [4], Garsia [9]) and in Theorem 5 it is proved that the five martingale
Hardy norms are equivalent for previsible martingales and for all parameters p.
It is verified that the stochastic basis is regular if and only if every martingale
is previsible. From this it follows that, in case the stochastic basis is regular,
all the five Hardy spaces are equivalent for all parameters p (see also Weisz

[22]). As a consequence, we obtain that the L, norm of sup E,_;|f,| can be
neN

estimated by the H; norm of f (1 < p < o).

In Section 4 the duality results are summarized. It was proved by Herz
in [11] that the dual space of H{ is BMO,. Furthermore, in [12] he gave a
description of the dual of H; in 0 < p < 1 case, too, and proved that its
dual space is equivalent to As(a) (@ = 1/p — 1) while considering a sequence
of atomic o-algebras. This result can be found in Weisz [22] for arbitrary
o-algebras. Herz [12] and Pratelli [15] verified that the dual of H; is H;
(1 <p<oo,1/p+1/¢g=1). Aj(a) is equivalent to a subspace of the dual of
P, and, in the regular case, the dual of P, is Aj(a) (0 <p< l,a=1/p-1)
(see Weisz [22] and for p = 1 Bernard, Maisonneuve [1], Herz [11]). As a
consequence, we shall obtain that A;(e) is equivalent to Az(a) (a > 0) in the
regular case. The dual of space G, (1 < p < o0) is characterized. Using this
result a new proof of the duality between H} and BM O3 is given (see Theorem
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9). As a corollary, we get an inequality due to Rosenthal [16] and Burkholder
(2] in which the Hj norm is estimated by the sum of the H? norm and the L,
norm of the supremum of the martingale differences (2 < ¢ < o00). Relations
between BMO,, BMO,, L, and the Hardy spaces are considered. It is verified
that the BMO, and BMO; (1 < p,q < o) norms are all equivalent if the
stochastic basis is regular (Corollary 7).

Spaces H{, H{ and P, are non-reflexive. It is interesting to ask whether it
can be found a subspace of BMO, as in the classical case (see Coifman, Weiss
[5]), the dual of which is one of the Hardy spaces. We define VMO, resp.
VMO, spaces as the closure of the vectorspace of the step functions in the
BMOy, resp. BMO, norms. A characterization with the limit of a function
from VMO is given in case every o-algebra is generated by finitely many atoms
(Proposition 4). If every o-algebra is generated by countably many atoms then
the duals of VMO,, VMO; and VMO, are H{, H] and P;, respectively. The
first and the second results can be found in Weisz [22] and [19] and the third
one is going to be proved in this paper. So spaces H;, H{ and P; are examples
of a separable, non-reflexive Banach space which is a dual space.

2. Preliminaries and notations

Let (2, A, P) be a probability measure space and let F = (F,,n € N)
be a sequence of non-decreasing o-algebras. The o-algebra generated by an
arbitrary set system M will be denoted by o(H). For simplicity, suppose that
a(ngN Fn) =A. Let F_; := Fo.

The expectation operator and the conditional expectation operators rela-
tive to F, (n € N) are denoted by E and E,, respectively. We briefly write L,
instead of the real or complex L, (2, A, P) space while the norm (or quasinorm)
of this space is defined by ||f||, := (E|f|P)!/?. For simplicity, we assume that
for a function f € L; we have Egf = 0.

An integrable sequence f = (f,,n € N) is said to be a martingale if

(i) it is adapted, i.e. f, is F, measurable for all n € N,

(1) Enfm = fa for alln <m.
For simplicity, we always suppose that for a martingale f we have fy = 0. Of
course, the theorems that are to be proved later are true in a slightly modified
form without this condition, too.

The stochastic basis F is said to be regular if there exists a number R > 0
such that

fa<Rfasi (n€EN)
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holds for all non-negative martingales (f,,n € N). The simplest example for a
regular stochastic basis is the sequence of dyadic o-algebras where Q = [0, 1),
A is the o-algebra of Borel measurable sets, P is the Lebesgue measure and

Fo=o{(k27", (k+1)27") : 0 < k < 2").

The martingale f = (f,,n € N) is said to be Ly-bounded (0 < p < 00) if
fn € Lp (n € N) and
[17llp == sup {|fallp < oo.
neN

In case f € L, it is easy to show that the sequence f = (Enf,n€N)is a
martingale. Martingales of this kind are called regular. Moreover, if 1 < p < 0o
and f € L, then f is L,-bounded and

(1) Jim [|Enf - fllp =0,
consequently, || f||p = ||fllp (see Neveu [14]). The converse of the previous

proposition also holds if 1 < p < oco: for an arbitrary martingale f = (f,,n €
€ N) there exists a function ¢ € L, for which f, = E,g if and only if f is
Ly-bounded (see Neveu [14]). If p = 1 then there exists a function g € L, of
the preceding type if and only if f is uniformly integrable (Neveu [14]), namely,

lim sup / |fa]ldP = 0.
Yy—=XneN
{Ifal>y}

Note that in case f € L, (1 < p < o0) besides the L, convergence in (1)
the conditional expectation E, f converges also a.e. to f (Neveu [14]).

Thus the map f — f := (Enf,n € N) is isometric from L, onto the space
of Ly-bounded martingales when 1 < p < 0o. Consequently, these two spaces
can be identified with each other. Similarly, the L, space can be identified
with the space of uniformly integrable martingales. By this reason a function
f € L, and the corresponding martingale (E, f,n € N) will be denoted by the
same symbol f.

The mazimal function of a martingale f = (fn,n € N) is denoted by

fa=sup |fml,  f*:= sup |fm].
m<n meN

We define the martingale differences as follows:

dof =0, dnf:=fo—=fa-r (n21)
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It is easy to show that (d, f) is an integrable and adapted sequence and
En--ldnf =0.

Reversely, if a function sequence (d,) has these three properties then (f,,n €

€ N) is a martingale where
n

fn :=Zd,,.

k=0

S(f) and s(f) are called the quadratic variation and the conditional
quadratic variation of a martingale f:

m 1/2 00 1/2
Sm(f) = (Eldnfl’) L S() = (Zld,.fl’) ,

n=0 n=0

m 1/2 00 1/2
sm(f) = (E En-ﬂdnfl’) . s(f)= (E En-lldnﬂ’)
n=0

n=0

Let us introduce the martingal Hardy spaces for 0 < p < oo; denote by
Hy, H;f and Hj the spaces of martingales for which

11z, == lIs(Hl, < o0,
I£llzs = IS(A)ll, < o

and

£l == 1571, < oo,

respectively.

We shall say that a martingale f = (fn,n € N) is predictable in L, (0 <
< p < 00) if there exists a sequence of adapted functions 0 < Ao < A; < ...
such that

|fa] < An-1, Ao = 8Up Ap € L,.
neN
Denote by P, the space of this kind of martingales and endow it with the
following norm (or quasinorm):

Ifllp, :=inf[Axly (0 <p < o00)

where the infimum is taken over all predictable sequences (An,n € N) having
the above property.
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If, in the previous definition, we replace the inequality |f,| < A,_; by

Sﬂ(f) S ’\n-l

then the martingale f is said to be a martingale with predictable quadratic
variation in L,. The space containing these martingales is denoted by Q, with
the norm

Iflle, :=inf|lAlly (0 <p <o)
where the infimum is taken over all predictable sequences again. It is clear
that the infimums taken in the P, and O, norms can be achieved. Indeed,
let (/\S,k), n € N) be a predictable sequence of (f,) for every k € N such that
||,\E,’;)||p — |Ifllp, whenever k — oco. Setting

An = inf A(F)

it is obvious that (),) is a predictable sequence of (f,) and

I£ll7, = [[Acollp-

The proof for Q, is similar. Q, spaces were introduced first by the author in
[22]. These spaces can be handled similarly to the way spaces Pp and H, can
be handled.

The dual of an arbitrary normed or quasinormed space X is denoted by
X'. We say that Y is the dual space of a space X when X' ~ Y where ~
denotes the equivalence of the norms and spaces.

Now we introduce the BMO and Lipschitz spaces. We shall show later
that these spaces are equivalent to the duals of Hp spaces. BMO; (1 < ¢ < 00)
denotes the space of those functions f € L, for which

fllssro; = sup I(Balf = En-1f11)!/ e < o0.

Generalizing this space we obtain the Lipschitz spaces. A7 (a) (1 < ¢ <00, >
> 0) consists of functions f € L, for which

1/q

1l oy o= sup sup P4y~ | [1f = EaciflfdP| <o
e neN A€eF, .4
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The spaces Ay(a) and BMO, can similarly be defined. A (a) and BMO,
(1 £¢ < o0,a > 0) denote the spaces of functions f € L, for which

1/q
[1flag(a) = sup sup P(A)71/i7® (/ |f = Eaf)? dP) < oo
neN A€EF, s

and
fllemo, = sup [(Enlf = Eaf19)"9leo,
neN

respectively. Obviously, A7 (0) = BMO; and A4(0) = BMO,. An element of
BMO is said to be a function of bounded mean oscillation.

Note that in the martingale theory the spaces BMO~™, BMO, A~ (a) and
A(a) are usually denoted by BMO, BMO%, A(a) and At(a), respectively.
However, in our treatment is more suitable to use these new notations.

3. Inequalities

In this section the connection between the five martingale Hardy spaces
introduced earlier is considered. The inequalities

I < NIA1le

(H € {H},H{ H}, Qy,P1}) can be shown easily.

The following two inequalities are belonging to the fundamental theorems
in the martingale theory. The first follows from the well known Doob’s
inequality and the second was proved by Burkholder and Gundy.

Theorem 1. (Neveu [14]) For an arbitrary martingale f € L, (p > 1)
one has

" 4
Mlle < 1Ml < -1 7I1£1lp
that s to say Hy ~ Ly, if p> 1.

Theorem 2 (Burkholder-Gundy’s inequality). ([2], [3], [4]) Spaces
HS and H are equivalent for 1 <p < oo, namely,

p
eollfllms < 1171

#; S Gollfllas (1< p<oo).

The next theorem can be proved with the help of the atomic decomposition
(see Weisz [22]).
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Theorem 3.
(1)
iz < Collfllmg,  WAllus < Collfllr; (0<p<2)

(i)

Wllay < Collfllms, Wl < Golifllas (2<p <o)
(i4i)
WAy < Iflle,, ifllas < lflle, (0<p<oo)
(iv)
Ifllay < Collflle,,  Ifllas < Gellfll,, (0 <p <o)
(v)
Wflle; < Collfllw,, Wfllee < Collflle, (0<p< ),

where the positive constants Cp depend only on p. (The symbol Cp, may denote
different constants in different contezts.)

As a supplement to this proposition, with another method, it is proved in
Weisz [20] that Pj is equivalent to Q, (0 < p < 00).

We can see from Example 1 that in general case neither (i) for 2 < p < oo
nor (ii) for 0 < p < 2 hold.

Applying these results we can give a simple proof of the well known Davis’s
inequality which is one of the most fundamental theorems of the martingale
theory. Bernard and Maisonneuve [1] gave a very nice proof for the inequality
ifllas < Cliflla;. With the help of Qp spaces we can prove the previous
inequality and its converse, too.

To the proof we shall need Davis’s decomposition of martingales of H,f
and H; and, moreover, some additional definitions. Let us denote by G, (0 <
< p < 00) the space of martingales f for which

”f”g, = ” Z Idnﬂ”P < 00.

n=0

Lemma 1. Let f € H) (1< p< o). Then there ezisth € G, and g € Q,
such that f, = h, + g, for alln € N and

lalle, < 2+ 2p)Ifllas,  llglle, < (7+ 2p)||fllns-
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Lemma 2. Let f € Hy (1 < p < o0). Then there existh € G, and g € P,
such that f, = hy + g, for alln € N and

lhllg, < (4+4p)lIflley,  ligllp, < (13 + 4p)liflla; -

The proofs of Lemmas 1 and 2 are similar, therefore we verify the first
one, only. The second one can be found in Garsia [9] and in Herz [11].

Proof of Lemma 1. Suppose that Ag < A; <...is an adapted sequence
of functions such that

Sa(f) < Aq, Aoo 1= sup Ay € L.

neEN

Clearly,

dof = dnfx(An > 2An1) +dnfx(An < 2A521).
Let

o0

h:= Z[dkfX(/\k > 2Xk-1) = Ere-1(defx(Ae > 2X- 1))]

k=1

and

[defxO < 20-1) = Broa(de fXOw < 20e-0))-

e

LS
1]
-

On the set {A\; > 2Ak—1} we have A\x < 2(Ay — Ag—1), henceforth
Idk fix(Ae > 2Mk-1) < Aiex(Ae > 2Ak-1) < 2(Ak = Ag-1)-

Thus
Zldkh|<2/\ +2ZE1c 1(Ae = A1)

k=1

The convexity lemma (see Garsia [9]) gives immediately
lIAflg, < (2+ 2p)l|Acollp-
On the other hand, we obtain that

[de flx(Ae < 2Xk-1) < Aex(Ar < 2Ae-1) < 22Xy,
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consequently,
ldeg] < 4he-1.

Finally we can conclude that

Sn(9) < Sa-1(9) + ldag| <
< Sn-1(f) + Sn-1(h) +4Mn-1 <

n-1

<A1+ 2Xq-1 42 Z Ee—1(Ae — A1) + 420210
k=1

Applying again the convexity lemma we get

llglle, < (7+ 2p)|Aoollp-

Saying A, 1= Sp(f) we get Lemma 1.

From Lemma 1 and 2 and from Theorem 3 (v) we get the next lemma that
was proved by Herz [11] for H;.

Lemma 3. Let f € X where X € {H} HJ} (1 < p < ). Then there
ezist h € Gy and g € Hy such that f, = hy + gn for alln € N and

llallg, < Collfllx,  llgllay < Collfllx-

This statement is trivial for 2 < p < 20. Lemma 3 will be used to prove
Davis’s inequality and also later while verifying an inequality between || - ||H;

and || - ||m; (see Corollary 6).

The next theorem was proved by Davis [6]. Other proofs can be found in
Burkholder [2], Garsia [9] and for continuous time in Dellacherie, Meyer [7].

Theorem 4. (Davis’s inequality) Spaces H{ and H} are equivalent,
namely,

cillflls < Il < Collfllms.

Proof. It is easy to check that
(2) Rlla; < llklig,,  llkllas < liAllg, -

Let f € HY. Then there exist h € G; and g € H{ such that Lemma 3 holds.
Applying these results and Theorem 3 (i) we get the right hand side:

WANa; < lhlla; +llglla; < llRllg, + Crllglla; < Cillfllas-
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The left hand side of the Davis’s inequality can be proved similarly.

Note that one can prove Burkholder-Gundy’s inequality for 1 < p < 2 with
the same method.

It is well known that some martingales can be obtained in a simple way
as the sum of some independent random variables. More exactly, if z,,z,,...

n
are independent random variables with zero mean then ( foi= Y za is
k=0 neN
a martingale with respect to the stochastic basis (Fn := 0(z1,22,...,2s)) N
Indeed, (z,z2,...) is a martingale difference sequence because E,_iz, =
= Fz, = 0. Marcinkiewicz and Zygmund [13] have proved that ||f||, is
equivalent to ||S(f)||p in case the martingale f is the sum of independent
random variables with zero mean and 1 < p < co. They gave a counterexample
for which this equivalence does not hold if 0 < p < 1. The following
counterexample of Burkholder-Davis-Gundy’s inequality for 0 < p < 1 is a
slightly modified version of the one due to Marcinkiewicz and Zygmund [13].
The next proposition can be found in Burkholder, Gundy [4], without proof.

Proposition 1. In general case neither ¢, > 0 nor Cp > 0 ezist such that
the inequality

(3) HIISHNlp < I Hp < Coll Sl
holds for all martingales if 0 <p < 1.

Proof. Let j be a positive integer and d’ := (d{,d';, ...) be a sequence of
independent, identically distributed functions such that

P(d,=1)=1-(j+1)7},

@ P(d,=-j)=(G+1)7"

o ) n .
Let fi := (f],f3,...) be the martingale defined by f := Y d}. If j > 2n
k=1

then obviously |fZ| > n, thus

E(fi* ) 2 E(IfiP) > n”.

n .
The sum Y |d|? can be estimated by n on a set the measure of which is
k=1

(1-(j+1)~1)" and by nj? on a set the measure of which is 1 —(1—(j+1)~1)".
So

E[S(FF1< (1 -G+ D))" + 0?31 - (1= (G + 1)7H)"].
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If the right hand side of (3) holds then we have for all j > 2n that
(5) nP<CE (np/z(l —GHY)TY - (1= (G + 1)'1)"])-
It is easy to check that for a fixed nand 0 < p < 1
Jim nP2P[1- (1= i+ 1)) = 0.
So, if we take the limit § — oo in (5), we obtain that
1< C',’;n""/2

which does not hold for all n € N. Consequently, the right hand side of (3)
cannot hold for all martingales.

On the other hand, let the independent sequence d’ := (d{,d‘%, ...) be
defined for odd j as in (4) and for even j == 2 as follows:
Pd¥=-1)=1-(2A+1)7",
P@¥=2)=+ 1"

Let the martingale f/ := (f{,f%, ...) be the same as above. The inequality
E[S(f3)P) 2 w?l?

is trivial. The maximal function (f})* can be estimated by 1 on a set the
measure of which is (1 — (j + 1)~!)™ and by nj on a set the measure of which
is1-(1-@G+1D)H" So

E((fFP)1<A=-G+)™ ) + a7 1 -(1-(G+1)7H)"].
From the left hand side of (3) it follows that for every j,n
EnPP < (1-(G+ D))+l -(1-(G+ 1))
Taking again the limit § — oo, we can prove, as we did above, that the left

hand side of (3) cannot hold for all martingales, either.

From this it follows that Lemma 1, 2 and 3 cannot hold for 0 < p < 1,
otherwise, with the previous method, we would have shown Theorem 4 for
every p.

It comes from the next example that the other Hardy spaces are also
different in general case.
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Example 1. Let Fo := {0,Q}, Fy = Fo = ... = A. Then H) = HJ =
=Ly Ly, |fllag =1 fllas = [1fllp; Hy = L2, Pp = Qp = Lo (0 < p < 00).

However, for a regular stochastic basis, Hardy spaces are equivalent with
each other. We prove a slightly more general result. First let us generalize the
definition of regularity. A martingale f is said to be previsible if there exists
a real number R > 0 such that

(6) |dnf|2 S REn—lldnf|2

for all n € N. The class of previsible martingales having the same constant R
in (6) is denoted by Vg. Note that Burkholder and Gundy [2], [4] considered a
slightly more general condition.

The inequality (6) could also be defined with the exponent p instead of 2.

Lemma 4. If (6) holds then there ezists a positive number R, such that
forallneN

(7) |dnf|p S RpEn—lldnflp (0 <p< OO)

Proof. Let 0 < p < 2. From (6) we obtain

E‘n—1|dnf|2 = En—l(ldnf|2-P'dnf|p) <
< Bt [ROP2(En_y|da 1) 292 d, fIP] =
= R(2—p)/2(En—1|dnf'2)(2_p)/2E""lld"flp'

Thus
(8) (En—1ldnf1*)P/2 < RC-PI2E, _\|dn fIP.
Again by (6)

ldnfIP < RPI?(En_1ldnf|?)?/? < REn_1]dn fIP.

Note that R, = R for 0 < p < 2. For 2 < p < oo the inequality (7) can be
obtained from Hélder’s inequality with R, = RP/2.
The condition (7) for p = 1 is belonging to Garsia ([9] 1I11.3.15). Now

we show that the condition (6) is ‘almost’ equivalent to the definition of the
regular stochastic basis.
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Proposition 2. If (6) holds for all martingales with the same constant R
then the stochastic basis F is regular. The converse is also valid.

Proof. Let f = (f,) be a non-negative martingale. Then

En—llfn - fn—ll = 2En—l[(fn - fn—l)-] < 2fn—l-
From (6) and (8) with p = 1 we obtain
|dﬂ.fl2 S REn—lldnf|2
< RY(En-1lfa = faal)?
<4R*fI_,.
Therefore
fo < faci+ldafl £ (14 2R) fa (n € N)

which yields that F is regular. The converse comes from the definition of the
regularity.

The following lemma will be used in the proof of the equivalence of the
Hardy spaces.

Lemma 5. For an arbitrary martingale f and 0 < p < 0o we have

E(sup Eq_1|fal?) < 2E(f°F)
neEN

and

E(:gg En_11SH()) < 2E[SP(f)).

Proof. We prove only the first inequality, the second one is similar.
Obviously,

sup En_1|falP < sup En_1(f3F) =
neN neN
= sup En_l[f:,fl + (f':p - f;fl)] S
neN
SFP4Y Eana(fa? = f22):
n=1

The lemma follows immediately from this.

Similarly to this proof for p = 1, we can verify the next theorem with
applying the convexity lemma.
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Corollary 1. For an arbitrary martingale f and for 1 < p < 0o we have

I sup En-alfallle < (1 + IS Mlp,

moreover, tf F is regular then the converse inequalily also holds with the
constant R.

Now we are in the posi'tion of being able to prove the equivalence of the
five Hardy spaces.

Theorem 5. For a previsible martingale f € Vg one has for every 0 <
< p < oo that

”f”H; < Cp”f”Hf < Glifl
< Gliflle, < Gliflle, < Gollflla;

Hy <

where the constants C, are depending only on the previsibility constant R and
on p.

Proof. The inequalities
WAy < Wflle,,  Nflles < Hiflle, (0 <p < o0)

come from Theorem 3 (iii). To prove the converse of the first inequality let
f € Hy NVg. Then by (7)

[falP < Cp(lfa-1lP +1dnfIP) <
S Cp(f:;fl + En—l|dnf|p) S
< Cp(fal1 + Encalfalf).

By Lemma 5 this implies that
(9) Ifllp, < Collflla: (0 <p<o0).

Notice that
SE(f) < Cp(Sh_1(f) + En-1ldnfIF) <

< Go(Sho1(f) + En1|SE(A)D)-

So the inequality

Iflle, < Collfllas  (0<p< o)
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can be proved similarly to (9). From these and from Theorem 3 (iv) it follows
that, for a previsible martingale f,

IAle; < Collfllns < Collfllr; (0 <p < o).

By Theorem 3 (i) and (v) we have
Ifl; < Gollflls < Gollfllw;  (0<p<2).

We can establish S(f) < R}/2s(f) by the previsibility, so the inequality
Iflls < Collflli < Collfllus (2 p <o)

follows from Theorem 3 (ii). The proof of the theorem is complete.

The inequalities between the H{ and P; norms can be found in Garsia [9].
The inequalities between Hy, H}f and H, are proved with another argument

by Burkholder and Gundy [2], [4], [10].
The following corollary follows immediately from Proposition 2 and from
Theorem 5.

Corollary 2. If F is regular then HZ, H;,g, Hy, Pp and Q, are all
equivalent (0 < p < 00).
This corollary is proved with another method in Weisz [22].

4. Duality theorems

In this section we characterize the dual spaces of the martingale Hardy
spaces investigated above. For example we give a new proof of the duality
between Hi and BM O3 and verify that the dual of VMO3; is Hy. For the
sake of the completeness all known duality results are given.

Theorem 6. For 0 < p <1 the dual space of H, is Az(a) (¢ = 1/p~1)
and for 1 < p < oo the dual of Hy 1s H; (1/p+1/q=1).

The proof of this theorem can be found in Herz [11], [12], Pratelli [15],
Weisz [22].

Now we consider the dual of P,. Let us denote by (P,); those elements /
from the dual space of P, for which there exists ¢ € L; such that

I(f)=E(f¢) (f€ L)
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The dual of P, is not A;(a) as one can see from Example 1 where we have
Pp ~ Lo and Aj(a) ~ L,. However, the following theorem is true:

Theorem 7. (Weisz [22]) A1(a) is equivalent to a subspace of the dual of
Py, more precisely, (Py)1 ~ Ai(a) (0<p<l,a=1/p-1).

If Ly can be embedded continuously in space P, then clearly (P;); = Py.
Hence, in this case, the dual of P, is Aj(a). In case F is regular in Corollary
2 it was proved that P, and H, are equivalent. Since L; can be embedded
continuously in space H;, the dual of Pp is Ai(a). In regular case Pp is also
equivalent to Hy, so their dual spaces are equivalent, too. Thus we obtain the
following

Corollary 3. If F is regular then the dual of P, is Ai(a), moreover,
As(e) ~ Ag(a) (a 2 0).

Independently of one another it was proved by Garsia [9] and Herz [11]
(in classical case by Fefferman and Stein [8]) that the dual of H} is BMO; .
We give a new proof of this result. The idea of this proof is due to Bernard
and Maisonneuve [1]. First the dual of G, (1 < p < oo) will be characterized.
To this we need the next well known definition and lemma. Let us denote by
Ly(I.) (1 < p,r < 00) the space of sequences of functions £ = (€n,n € N7) for

which
€Nz, == 1O 1€al7) " llp < 0o

neN

Lemma 6. The dual of Ly(I,) is Ly(l,) whenever 1 < p,r < oo, 1/p+
+1/¢=1and 1/r+1/s = 1. The bounded linear functionals of Ly(l.) can be
written in form

(10) AE) =D EGm) (€€ L)),

keNJ

furthermore,

1ALl = lnllLqq.)
for any n € Ly(1,).

The proof is similar to the one of the duality between L, and L,.
Obviously, G, is a subspace of Ly(l;). Similarly, we define some subspaces
of Ly(l) containing martingales. Denote by BD, (1 < ¢ < o0) the space of
martingales f = (fn,n € N) for which

lfllBp, := || sup |dnflllq < oo.
neN
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Theorem 8. The dual space of G, is BD, where 1 < p < oo and 1/p+
+1/q =1.
Proof. Setting ¢ € BD; and

Ig(f) = E(defded)  (f €Gp)

k=1

we obtain that -
16(9)] < E(3 ldeSfllded]) <
k=1

oo

< B(Y ldufl sup g <

k=0
< £, liBo,,
namely, Iy € (G,)' and |[lg}} < ||4llBD,-

Conversely, let | € (Gp)' be an arbitrary element of the dual space. We
show that there exists ¢ € BD, such that [ = {4 and

2q
11 <
(11) ll¢llep, < P

-

Let us embed G, in space L,(l;) with the map f — (dif, k € N). By Banach-
Hahn’s theorem ! can be extended onto L,(l;) preserving its norm. Denoting

by A the extension of [ we have by Lemma 6 that there exists n € L,(ls) such
that ||A|| = ||{|| = |nllL,(.) and (10) hold. Thus

(12) (fa) =D El(def)m] = Y E[(def)(Exme — Ex-1m)].
k=1 k=1

Defining

n

$n =) (Exm — Ex-1me) (g0 :=0)

k=1

one can see that ¢ = (¢,,n € N) is a martingale. Since

sup |dp$| < sup (Ee|nk| + Ex-1lm|) < 2 sup En(sup |nef),
kEN k€N neN keN

we get (11) from Doob’s inequality. Using the fact that f, — f in G, norm we
have from (12) that [ = 4.
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Note that if ¢ € LoN BD,y and f € L NG, then

(13) o(f) = lim Ly(fa) = lim E(fadn) = E(f9).
It is worthy to emphasize the next consequence hidden in the proof of
Theorem 8. A similar result for BMO; can be found in Garsia [9].

Corollary 4. Being ¢ € BD, (1 < ¢ < c0) there ezists a sequence of
Junctions 1 = (na,n € N) € L(lo) such that

én ':-deﬂk (neN)
k=1

and

29
InllLetie) S 1BllBD, £ —1IllL(10)-
q—1

Now we characterize the dual of H;. Though the dual of Hy (1 < p < 00)
is known, it is worthy to characterize it, too.

Theorem 9. The dual space of Hy (1 < p < 2) can be given with the
norm

ll¢ll := li¢lla: + l$llep,  (2< g < 00)
where 1/p+1/q =1 and with the only usage of the notation H: := BMO,.

Proof. Let ¢ € H;NBD, be fixed. Note that, in this case, clearly ¢ € L,.
We shall prove that

(14) lo(f) = E(f¢)  (f € La)

is a bounded linear functional of Hy (1 < p < 2). Since L is dense in Hy,
functional ly is well defined. As f, — f in Lz norm (n — 0o0), we have

lo(f) = lim E(fa).

It comes from Davis’s decomposition (see Lemma 3) that there exist martin-
gales h and g such that f, = h, + g, and

ihllg, < Colifllm;,  llglla; < Collflla; -

If f € L, then functions h, and g, are finite sums of square integrable
differences, so they are in Ly, too. Henceforth
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Applying Theorem 6, 8 and (13) we can conclude that

|E(fad)l < Collgnlla; lI¢lla; + llhnllg, l¢llsD, <
< Gollglla;liglla: + lihllg, l14llsD, -

Now, from Lemma 3, we get that

(15) |E(f6)| < Goll fllm; (14|

H: +1¢llsp,),

namely, [, is really a bounded linear functional.

Conversely, assume that [ is an arbitrary bounded linear functional on H;.
From Doob’s inequality we have ||f||n; < 2||fll2 (1 < p < 2), thus lis also a
bounded linear functional of L,. Consequently, there exists ¢ € L2 such that

I(f) =1s(f) = E(f¢) (€ La).
On the other hand,

Wflle; < Cpllflle; (1<p<2)
(see Theorem 3 (i) and obviously

ey <liflle, (1<p<oo)

Henceforth, ! is also bounded on H; and on G,. We proved in [22] that L, is

dense in Hy (1 < p < 2). Moreover, it can easily be proved that L, NG, is
dense in G,. Consequently, we obtain from Theorem 6 that

llella; < Collll (2 < ¢ < o)
and from Theorem 8 and (13) that

l4llep, < Clllll (2 < g < 00).

Hence
l¢lla; +l1¢llBp, < Collll - (2< g < o00).
The proof of the theorem is complete.

Since in the previous theorem H’ = BMO,, the next proposition shows
that the dual of H} is BMO; .
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Proposition 3. One has the equivalence

- llsao; ~ Il - llBMo, + 1 - 8D -

Proof. First we prove that if f € BMO, then
(16) |fo = fa-1l £ “f“BMo; (1<g<00).

This yields that f, € L. To prove (16) let us remark that the conditional
expectations (En|fm — fn—1|)m>n increase as m increases and n is fixed. This
follows from the fact that the sequence (|fm — fa-1|)m>n is a submartingale.

Since f € L4, this submartingale converges a.e. and also in L; norm to the
function |f — fn—-1|. Thus

lfm - fn—ll S Em‘f - fﬂ—lly

consequently,

Enlfm—fn—ll SElnlf_fn—ll (mzn)

Setting m = n in the last inequality and using Holder’s inequality we get (16).
From (16) and from the equation

[o ]

Enlf-fl|2 = E, ( z |dkf|2) (>n-1)

k=I+1

we obtain that
sup{|l¢llBmo,, 14llBDo } < l1¢ll5aros; -

On the other hand, it is easy to see that
I8llparo; < lidllBmo, +1i4llBD.. -

The proposition is proved.

So we get the following corollary.
Corollary 5. The dual of H} 1s BMOj3 .

Remark that if 1 < p < co then the dual of Hy is Hy (1/p+1/¢ = 1).
Thus the H7 norm and the norm given in Theorem 9 are equivalent.



270 F. Weisz

Corollary 6. For a martingale f we have

1F7lle < Colls(Hllg + Coll sup ldaflll;  (2<¢< ).

Note that the converse of this inequality follows also from Theorem 3 (ii).
Corollary 6 for 0 < ¢ < 2 is verified in Theorem 3 (i). This corollary was proved
by Rosenthal [16] in case the differences (d, f) are independent. Three years
later Burkholder [2] proved it for arbitrary martingales. Schipp [17] applied
this inequality for proving the L, (1 < p < o0) norm convergence of Fourier
series.

In case 0 < p < 1 the dual of H; and Hps is unknown in general. However,
we give a special result due to Herz [12] without proof.

Theorem 10. Consider a sequence of atomic o-algebras. Then the dual
of HY isAj(a) 0<p<l,a=1/p-1).

Now we investigate the relation between BMO, BMO™ and L,. It is easy
to see that

Ifllemo, <2 flleos  I1fllprmo; < 2lflleo-

Moreover,
fllBmo, = sup N(Enlf = fal*)?lleo = sup N(Eals®(f) = s2 (A Moo <

< sup |(En[s* ()" lleo < lls(f)llco-
neN

The dual of H] is BMO3; and L, C Hf in case 1 < p < oo. The equivalence
between BMO, (1 < p < 00) spaces was proved in Garsia [9] and Herz [11].

So we have
Lo CBMO, C L, (1< g <o0).

Furthermore, the dual of H} is BM Oy, the dual of H; is Hy and H, C H]
(l1<p<oo,1/p+1/qg=1). Hence

Le,Hs, C BMO; C H, (1<q< o).
It is easy to see that
17 Ifllemo, < 2iifllpamos -

Indeed, applying (16) and the inequality

(Enlf = falP)VP < (Elf = fac1 )P + | fo = fazil
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we obtain (17). So the following relation holds:
L C BMO, C BMO, C L, (1<p<o0).

Notice that BM O, spaces are usually not equivalent as we could see in Example
1 that BMO, = L,.

If ¥ is regular then P; ~ H;, hence their dual spaces are also equivalent.
Namely, BMO, ~ BMO5; . From this, from (17) and from the equivalence of
BMO, spaces we obtain

Corollary 7. BMO, spaces are usually not equivalent, though if F is
regular then every BMOy and BMO, are equivalent (1 < p,q < 00).

Of course, the duals of BM O, and BM O3 are not Hj and H;. However,
H; and H] are equivalent to certain subspaces of the duals of BMO; and

BMOj , respectively. If I;(¢) = l4(f) then l; is a bounded linear functional

on BMO; resp. on BMQO; where ¢ € BMO; and f € H{ resp. ¢ € BMO;
and f € H;. Moreover, the following inequalities also hold:

Ifla: < gl < Chllfling

and respectively

Wity <Nl < Cull fllas -

However, a kind of special subspaces of BMO; and BM O3 the duals
of which are H{ and H{ can be defined. These subspaces will be denoted
by VMO, and VMO7, respectively. The relations between H], BMO; and
VMO3, and, moreover, between H;, BMO; and VMOj3 are quite similar to
the relation between [y, I, and its subspace of 0 sequences ¢g. It is known that
the dual of the non-reflexive space [ is ., and the dual of ¢g is ;. The spaces
H} and H} are two of the few examples of a separable, non-reflexive Banach
space which is a dual space. Another example is the classical Hardy space (see
Coifman, Weiss [5]).

From this time on to the end of this section let us suppose that every
o-algebra F, is generated by countably many (set) atoms. Denote by A(F,)
the set of atoms of the o-algebra F, and let

AF) = Y AFn).

Let us write L' and L in order to denote the linear envelope of the set

{x(4): A€ A(F)}
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and the vector space
{p €L’ :Eyp=0}.

Let VMO, and VMO, be the closures of L in BMOy and in BMO, norm,
respectively (1 < ¢ < 00). The elements of VMO are said to be the functions
of vanishing mean oscillation. We shall see that the BM Oy norm is the same
as the following one:

[|¢|l ;= sup sup P(A)_l/q(/ |6 — ¢4 dP)l/q
nEN ACA(F,) A

where ¢4 := P(A)~! [ ¢ dP. Indeed, suppose that A € A(F,) for some n € N,
A
then E,¢ = ¢4 on the set A and

1/q
I¢lisrao, > P(4)71/¢ ( / |6 — g4 dP)
A

On the other hand, let n € N and A € F, be arbitrary, so one has A :I:)L_CJ’1 Ay
where A € A(F,). Henceforth,

P(A)"/lq&-Emﬁl“dP:P(A)-lz:/|¢,_¢A»|qdpS
A

k=1Ah

<lolirp(ay e (B, 4) = o

Similarly,

~1/q A 1/q
li¢llparo; = sup sup P(A) ( |6 — ¢ | dP)
n€N A€A(Fn) J

where, for an atom A € A(F,), A~ denotes the atom A~ € F,_; for which
ACA™.
If¢ € VMO, and ¥ € VMO, it is obvious that

Y
lim sup P(A)"Y/¢ (/ 6 — ¢4 dP) ‘= 0
N0 A€A(Fn) -
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and

tim sup  P(A)( [ 1o -4 prar) " =0
A

N—=00 A€ A(F,)

If every o-algebra F, is generated by finitely many atoms then even the
converse of the preceding statement holds.

Proposition 4. If every o-algebra F, is generated by finitely many atoms
then for the functions ¢ € BMOy and ¢ € BMO, we have ¢ € VMO, and

Y € VMO, if and only if

i - O/q . -
(18) 1im [[(Eal$ ~ Endl®)!/7]los = 0
and
(19) Jim [[(Bal$ = En-1919)Y7||o0 = 0.

Proof. Assume that ¢ € BMO, satisfying (18). Let N be an index such
that foralln > N

H(Enld — Endl))/*lleo < €
(¢ > 0). Clearly, Ex¢ € L and inequality
li¢ — Endl|lBMo, <€

follows from equalities

(¢ — En¢) — En(¢— End)=(¢—Eng) (n<N)

and

(¢—EN¢)"E11(¢"‘EN¢)=(¢—En¢) (nZN)

and from the inequality

(Enlé — Enél9)/lloo < [(Enlé — EN¢l")/]lw  (n < N).

Formula (19) can be proved similarly.

Now we can identify the dual of VMO, and VMO;. The following
theorem was proved in classical case by Coifman and Weiss [5] and for dyadic
martingales by Schipp [18]. The idea of the proof is due to Schipp.
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Theorem 11. If every o-algebra F,, is generated by countably many atoms
then the dual of VMO; is H3, the dual of VMO, is Py and the dual of VMO,
is Hy.

Proof. The first and the second duality results are proved in Weisz [22]
and [19]. So we sketch the proof of the third result, only.

By Theorem 9, for a function f € H;, we have that

ly(¢) = E(f¢) (¢€L)

is a bounded linear functional on VMO .

.Conversely, we can conclude that if { € (VMOJ ), there exists f € Hy
such that
l(¢)=E(f¢) (o€l

and

WA lla; < 3l1l-

To verify this, we embed the normed vector space (L, || - ||,/ Mo;) isomet-
rically in a space the dual of which can easily be found. Let

X4 = Lz(A,An A, P)=: Ly(A)

and
l€llxa = P(A)Y2€llLaay (A € AF)).

Let

X =

= X XA
A€EA(F)

with the norm

l€lix == sup |[|€allx.4 (E=(6a, A€ A(F)) € X).
ACA(F)

We extend the functions of X4 from A to the whole Q such that they take the
value 0 outside A. Denote by Xy those elements £ € X for which £4 = 0 except
for finitely many A € A(F). It is easy to see that if A € X then there exists
fa € X4 (A € A(F)) such that

GERSY /fAﬁA dP (£ € Xo)

AEA(F) Y

and

A= 3" P(A)Y?[|fall2 < co.

A€A(F)
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Now we embed (L, || - ||VMO;) in Xy the following way:

R:L— Xo, R¢:=((¢=¢"* )x(A), A€ A(F)).

Ifl € (VMO3Z) then lo R™! is a bounded linear functional on the range of R,
thus, by Banach-Hahn’s theorem, I o R~! can be extended onto X, preserving
its norm. Consequently, there exists fo4 € X4 (A € A(F)) such that

[l =Mte R =D P(AYfall

A€EA(F)

and

9= [fa-6*)ap (e

ACA(F) Y

It is easy to show that the last equality can be written in the following form:

=Y [ta-sireap= Z](fk—Ek S)#dP  ($€L)

AEA(F) Y k=0

where

Y fax(A)=fi  (keN).

A€EA(F)

Applying the conditional Hélder’s inequality we get that

(20) NEe-1fell < IIfells = (1Eelfellly < I(Eelfel®)2l:.

Because of

(21) > PAYfallz = Z ICEnl£al?)* 2111,
ACA(F)

we obtain that the series -
S (fir - Eeoifi)
k=0
converges a.e. and also in L; norm to a function f € L.
We shall show that f € H} holds. It is easy to see that

I fllg < Y- Nfe = Exoifallag,

k=0
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too. Obviously,
(22) fe = Ex-1fella; = ||81;l: |En(fi = Ex—1fe)llls <

< |Isup |En fellls + | Ex-1 fells-
n>k

Moreover, by the conditional Hélder’s inequality we have

2
By (sup |E,.fk|) }
n>k
for each n € N. Since

X(E) sup |En f} = sup |Ea(x(E)f)]
n>k n>k

1/2
<

1

sup | En fi
n>k

Ex (SUP |Enfk|)
n>k

1

for all f € L, and F € Fi, we can see by Doob’s inequality that
P
_P )\ P
B (spienfl) < (C25) B G>0).
Applying this inequality for p = 2 we obtain

< 2|(Eel £l 21
1

sup | Ep fi
n>k

Therefore, it follows from (20), (21) and (22) that

Wfllee < 3D NCEElfel?) 20 = 311l-

k=0
The proof can easily be finished.

This theorem shows, in particular, that whenever L; is not a dual space —
which is, in fact, the usual situation — and every o-algebra F, is generated by
countably many atoms then H} and H} is a basically different space from L;.

The proof of Theorem 11 contains the following information concerning
the structure of Hj.

Corollary 8. Let every o-algebra F, be generated by countably many
atoms and f € H{. Then there ezist functions f, € Ly (n € N) such that

f=3 (fa=En-1fa)

n=0
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a.e. and also in Ly norm and, moreover,

CT Y Bl 2 < f Nl < 3D II(Enlfnl)M?)1.
n=0

n=0

A similar result for H} space can be found in Weisz [22]. Since BMO,
spaces are all equivalent (1 < ¢ < 00), so VMO spaces are also equivalent.
For other parameters ¢ and under more general conditions the duals of VMO,
spaces are given with the atomic Hardy spaces in Weisz {19]. The dual of the
closure of L in Az(a) norm is observed in Weisz [22].
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