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Abstract. In case of sequences of independent identically distributed
random variables having regularly varying distribution function at infinity
with exponent of variation —y < 0 we give a representation for the limit
of power processes as with probability 1 piecewise continuous stochastic
process with simple structure and prove the invariance principle. These
results, which are valid on the interval (y/2, 00) when the limit process has
stable (non-gaussian) marginal distribution, generalize the ones concerning
the empirical moment process (see M.Csorgd, S.Csorgd, L.Horvith and
D.M.Mason [3]) and provide possibility to represent the limit distribution
in a plausible form for a wide class of symmetric statistics.

1. Preliminaries

Let X, X1, X2,... be a sequence of independent identically distributed
random variables with common distribution function F(z), for which the
relations

F(=y) =(C-+0o(1))y"L(y), 1-F(y)=(C++0(1))y " L(y),

(1) y — 00
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hold. Here v, C-, C; are real constants and y >0, C_- >0, Cy >0, C_+
+C4+ > 0, L(y) is slowly varying function at the infinity.

Let in case of arbitrary z € R be z¥ = max(z,0), z~ = max(-z,0),
hi(z,t) = (z¥)I(z > 0), 0 <t < oo (I is the indicator function, 0° = 1) and
let us define for arbitrary n > 1 the twodimensional vector-process

s™(t) = (s(:)(t), s(_")(t)) , 0<t<oo

as a power process determined for the positive and negative parts of random
variables X, where

s©(t) =3 ha(XE ).
j=1

Having chosen the nonrandom centering and normalizing values (see (4) and

(5))
a () = (aP@), o), ¥ #0

and introducing the normalized power process

@ 200 = (600) " (L) - )

on the basis of results [18] (see also [7]) we can obtain the following

Theorem 1. If condition (1) is fulfilled then there ezists such stochastic
process {Z(t) = (Z4+(t), Z-(t)), 0 <t < oo} that the finite dimensional distri-
butions of stochastic processes {Z(")(t), 0 <t < 0o}, n =1,2,... converge to
the finite dimensional distributions of stochastic process {Z(t), 0 <t < oo}.

With the convergence of the sequence of stochastic processes { Z(")(t), 0 <
<t < oo}, with determination of limit process {Z(t), 0 < t < oo} and the
investigation of its properties we will deal later. It is important because of the
following reasons.

It can be seen that the sequence of twodimensional power process s(")(t)
defined by the positive and negative parts of random variables X; and the
empirical power (moment) process

SM(t) = (5(), S(t), 0<t<oo, n=12,...,

S™ME) =S 1(X; > 0)1X;1 sen X5, STVt = S 1(X; > 0)1X; "

j=1 i=1
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(investigated in [21] and [22]) mutually determine each other since a simple
linear relation exists between them:

(3)
S™M(t) = % (90 -2w), s = % (L0 +52w), t20

At the same time a wide class of symmetric statistics Ti,, formed from the
sequence of random variables X, X3,... can be represented as a function
gkn of values of stochastic process S(®)(t) in suitable (fixed) time moments
ti,ts,...,t, namely

Tin = gkn (S(n)(tl), RN S(")(tk)) .

So in consequence of relations (2) and (3) it can be represented in the form
Tin = ;k,. (Z(")(tl), . Z(")(tk)), as a function of values of stochastic process
Z(")(t), where the functions 3;,,, are determined by gi,, and by the values

b(™)(t;), a™)(t;). If the sequence of functions Jkn are continuous and converge
to a continuous function g as n — oo, then the sequence of statistics Tk,
has limit distribution and it is equal to the distribution of random variable

9(Z(t1), - - -, Z(tk)).

The statistics of this type are, for example, symmetrical polynomials,
symmetrical rational functions, U- and V-statistics with power function kernel
formed from the random variables X;, X,,... were investigated by several
authors, the closest to our article are the papers [4], [6],[12], [14], [16], [18-
23], [26-28], see also [13]. This means that the investigation of power processes
Z(™)(t) and the limit process Z(t) plays essential role in limit theorems for
an important class of symmetric statistics and in addition it can be used
for nonlinear modelling ([24]). We note that the limit distribution of general
symmetric statistics and weighted symmetric statistics in the case, when there
exists bounded second moment, was investigated in the papers [8] and [15],
respectively. ’

Remark 1. In the case P(X > 0) =1, EX?* + EX® < 00,a <0< b
the power process Z(")(t), a < t < b was studied in the paper of M.Csorgs,
S.Csérgd, L.Horvath and D.M.Mason [3] (in our case 2b > y and s™(t) = 0).

Remark 2. Limit theorems for the sums of positive and negative parts of

random variables X, X», ... (i.e. sg')(l) and s(_")(l)) were investigated in [25]
by Tucker.
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2. Main results

For the description of results let us introduce the following notations: p; =
s

= P(X >0), p- = P(X <0), po = P(X =0), Lo(s) = [ £&dy, s > 1. Let
1

us denote for sufficient large natural n

@ nl/? ift <% and E|X|* < oo,
bm(t) = sup{s': n > s?2Lo(s), s > 1} ift =7 and E|X|" = oo,
D}, where
D, =sup{s: n>s'L71(s), s>1} ify/2<t
and

nEhy(X,1) if 0<t<9y/2,

5) o) = {
nEhy (X, )I(he(X,t) < b™)(t)) if v/2<t< oo.

Let us denote for arbitrary natural number M, positive number C and
arbitrary real vector t = (¢1,...,tp) € RM with the property v/2 < t; < t; <
< ...<tp < oo the function

(6) fo(Xit,7,C) =

o0 M M

= exp c/ [exp {iZ/\ju’f/"} —1-id0<u< 1)Zx,-u':/7] u"%du y,
0 1 1

where A = (Ay,...,Am) € RM . Let us denote the sets

Ty =[0,v/2] and T, ={0} if E|X|" < oo,
Ty =[0,v/2) and T = {y/2} if E|X|" =00, and
T3 = (7/2’ w)

Theorem 2. If condition (1) is fulfilled, then the limit process Z(t) in
Theorem 1 possesses the following properties:

(A) The parts {Z(t), t € T\}, {Z(t), t € T2} and {Z(t), t € Ts}
of stochastic process {Z(t), 0 < t < oo} are independent; the process
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{Z2(t), t € T1 UT,} is gaussian process; the onedimensional distributions of
process {Z(t), t € T3} are stable.

(B) The process {Z(t), t € Ty} can be represented in the form
Z(t) = V() + W(t),
where

V() = (V+(®), V-(1)),
W(t) = (Wi (1), W_(1) = ([Eh4(X,1)/p4] Wy, [ER_(X,8)/p-]W-),

for which the following relations hold

(a) the vector-valued gaussian process {V(t), t € T\} does not depend on
the gaussian random variable W = (W4, W_);

(b) the components V,(t) and V_(t) of process V(1) are independent with
zero ezpectation and with covariance functions (t, s € T1)

(7) Rs(t,s) = cov(Ve(t), Va(s)) = Ehg(X,t+5)— Ehy(X,t)Ehs(X,s)/p+,

(if p+ =0, then we define Ry(t,s)=0);

(c) the random vector W has zero ezpectation and its covariance matriz
Cw is

(P+(1 —P+)  —P+P- )
(8) Cw = cov(W) = .

-pyp-  p-(1-p-)

(C) If the set T, is non-empty, then the gaussian random variables Z,(v/2)
and Z_(v/2) are independent with zero expectations and with variances Cy and
Cc-.

(D) The components {Z,(t), t € T3} and {Z_(t), t € T3} of process
{Z(t), t € T3} are independent and the characteristic functions of their finile
dimensional distributions are (see (4))

fe(At) = fu(Xt,7,C4) and  fo(At) = fu(At,y,C-).

Remark 3. The statements of Theorem 2 remain valid in all interval
Ty = [0,a/2], a > 0 if condition (1) is replaced by condition E|X|® < oo.
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Remark 4. In the case p; > 0 we define the distribution functions
Fy(y) = (F(y) — F(+0))/p+ if y > 0and Fy(0) =0,
9) and
F_(y) = (F(0) - F(-y))/p-, ify>0,

then the covariance functions of processes Vi (t) have the forms

(10)  R(t,s)=ps ( / Y dFy(y) / v dFs(y) / y’d&(y)) .
0 0 0

Remark 5. The determinant of covariance matrix Cw is det(Cw) =
= p4+P-Do, therefore the distribution of gaussian random vector is nondegen-

erate iff pyp_po # 0.

In Theorem 2 the limit process Z(t) is given in weak sense, e.g. with the
finite dimensional distributions. We determine it in the following theorem as
piecewise continuous with probability 1 process.

Theorem 3. Assume that condition (1) holds. Then there ezists a
stochastic process {Z(t), 0 <t < oo} on some probability space with finite
dimensional distributions given in Theorem 2, continuous with probability 1 in
the intervals (0,v/2), (v/2,00). Moreover, if the condition E|log|X|| < oo
(resp. E|X|"|log|X]|| < oo) holds, the process Z(t) is continuous from right
with probability 1 at t=0 (resp. from left att = v/2).

The existence of such process on the interval [0,v/2] is guaranteed by the
behaviour of expectation and covariance function. In the interval (v/2,00)
we construct it on basis of the following theorem using the representation of
random variables having stable distribution with parameter a, 0 < @ < 2 by
means of Poisson integrals from [6] (see also [5], Theorem 3).

Let be 9,2, ... a sequnce of independent exponentially distributed with
parameter 1 random variables. Let us introduce the left continuous standard
Poisson process {N(t), 0 <t < oo} with the equation

N(t):21(¢1+...¢,~ <t), 0<t<oo,
j=1

and define the stochastic process {{(t), 1/2 <t < oo} on the following way

oo

1
() = /N(u)tu"l"'du + /(N(u) —u)tu""tdu + 1.
0

1
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We note that {(t) is well defined, finite with probability 1 (see Theorem 3 [5])
and its characteristic function is equal to

E exp{iA((t)} = exp {/ [exp{idu'} — 1 —iAI(0 < u < 1)u] u'2du} :

0

By means of {(t) we can immediately construct the processes Z,(t) and Z_(t)
satisfying the conditions of Theorem 3, so in the future we will deal with the
most important properties of {(t) formulated in the following statement.

Let M be arbitrary natural number, A € R and t = (¢;,...,tp) arbitrary
vector satisfying condition

1/2<t; < ... <ty < oo.

Theorem 4. The stochastic process has the following properties:
a) the characteristic function of finite dimensional distributions of ((t) is

fo(Ait,1,1);
b) in case ¥ > 0, C > 0 for the process

(11) Crc(s) = C*1¢(s/) +7(s),  7/2<s<w

derived from the process ((t), the characteristic function of finite dimen-
stonal distributions is f.(A;t,v,C), where

r(s) = I(s =4)ClogC + I(s # 7)v(s — 7)—1 (C(’-'V)/'Y _ 1) ’

¥/2 < s < 00,

is arbitrary many times differentiable;

c) ((t) is arbitrary many times differentiable with probability 1 process
on the interval (1/2,00) and for the k-th (k > 1) derivative process
{¢)(t), 1/2 < t < 0o} the representation

1
(g = / N(u)u='=*(~ log u)*~\(k — t log u)du+
(12) o
+ /(N(u) — u)u~ (= log u)*~1(k — tlog u)du
1
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takes place and the characteristic function of its finite dimensional distributions

fsk)(,\,t,l 1) = exp{/[exp[ Z:z\Ju (log u) ]

M
—1-i(0 <u< )Y un logu)")l du}.
j=1

Corollary 1. Starting from the process {{(¢),1/2 < t < oo} in
case of arbitrary ¥ > 0, C > 0 the finite dimensional distributions of
{¢y,c(t), 7/2 <t < oo} defined by (11) coincide with the finite dimensional
distributions of processes Z4(t), Z_(t) (/2 < t < oo) when the parameter
C takes on the values C; and C_ respectively. From another side it is
obvious that the mapping (11) preserves the continuity with probability 1 and
the differentiability with probability 1 of the process (on the corresponding
interval). So the proof of Theorem 4 completes at the same time the proof of
Theorem 3 on the interval (7/2, 00).

The processes Z(")(t), n = 1,2,... and the limit process Z(t) are piecewise
continuous with probability 1. This fact makes easier the proof of invariance
principle.

Let [a,b] be an arbitrary closed interval of the open interval (0,v/2) or
(7/2,00). Let us define (C[a, b] x C[a, b]) as the space of R2—valued continuous
functions on the interval [a,}] and let B[a,b] be the minimal o-algebra which
contains all cylinder sets from (C[a,b] x C[a,b]). Note that this space with
the supremum norm is a complete separable metric space and Bla, ] is Borel
o-algebra.

The sequence of processes Z(")(t) and the limit process Z(t) determine on
the measurable space {(C[a, b] x C[a, b)), Bla,b]} the measures ’P[ 3 and Pla),
respectively. Then there is valid the following

Theorem 5. If (1) is fulfilled then the weak convergence of measures
'P[(:‘g] 5 Pla,b)s n — oo

holds.

Note that one can consider the invariance principle in like manner in the
case, when the processes Z(")(t) and Z(t) are replaced with their derivative
processes.
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Remark 6. Notice that from Theorem 1 immediately follows that for
arbitrary natural k, t = (t1,...,t) € Rf‘,, and arbitrary real valued Borel-
measurable function g the convergence (in distribution)

9q(ZM(ty), ..., ZM(t)) S 9(2(11),- .., 2(tk)), n— oo
holds. Theorem 5 shows that by the Prohorov theorem for every bounded

Bla, b]-measurable functional G given on (C[a, b] x C[a, b]), which is P[4 3) almost
surely continuous, the following convergence is satisfied

G (27()) 4 6(2(), n—oo.

3. Proof of theorems

Let us denote for sufficient large natural n the sequence of normalizing
and centralizing values playing role in [18]

nl/2 if t <% and E|X|* < oo,
B™(t) = sup{s': n > s?E|X|"I(|X| < s)}, ift =1 and E|X|" = oo,

D}, where
D, =sup{s: n>s"L7(s), s> 1} ifvy/2<t

and
nEhy(X,t) if 0<t<y,
AD(t) = { nEhs(X,7), if y<t< oo,
0, if ¥y<t<oo,
where

ha(e,n = (BOM)?he(X,7) (BOM)? +(he(X, 1))

With the help of results concerning slowly varying functions it is not difficult
to verify that the following relations hold

Jim B®(/2) (69/2)) " =Cy+C-,
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lim (50 (o) - 4P) =0,
and

Tlim (b(")(t))-l (L) - aP) =

(oo}
Cs [ ut/Tu=2du = c*:r-‘—?, ify/2 <t <7,
! —
= ) .
Cy [u!/"u%du = Ciﬁ’ if vy <t< oo,
2 —
so Theorem 1 and the parts (A), (C), (D) of Theorem 2 are simple consequences
of paper [18].
Proof of part (B) of Theorem 2. We carry out the proof by

investigation of the process Z(")(t) and give a clear notion on the nature of
given representation of the limit process Z(t).

By the definition for every t € T} and n > 1 hold

b™)(t) = 02, a{(t) = nER(X,t) and a{)(0) = lim nEhs(X,1) = nps.

Let us represent the process Z(")(t) as the sum of two processes as follows
ZM(t) = v(t) + w(2), teT,
where
v = (VU@ vEw), W = (WP, ww), ten,
and the individual components are defined by the equations
V() = nt2 Z I(X} > 0)[he(X;,t) - Eha(X;,t)/px],
j=1

and
WM (t) = [Ehs(X,t)/ps]n~ 1/ }:(I(X,* > 0) — ps).

”»

Here the components indexed by signs ”+” and ”—
the conditions p; = 0 and p_ = 0 hold, respectively.

we equalize with zero if
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We prove the weak convergence (convergence of finite dimensional distri-
butions)

(13) (V) W) S (V(t),W(t), n— oo,

where the gaussian process {(V(t),W(t)), t € T} has expectation and
covariance function given in Theorem 2. Then from the relation (13) follows
the weak convergence

(14)  Z™M(@) S 2(t) = (Va(t) + Wa(t), V-(t) + W_(), n— oo,

which means the verification of the part (B) of Theorem 2.

Since the random variables X;, X5,... are independent and identically
distributed, therefore it is clear that for all n > 1 the processes {V(®)(t), t €
€ T1} and {W(")(t), t € Ty} have zero expectation functions, their covariance
functions are equal to (7) and (8), respectively, they do not depend on n and
by the central limit theorem the limits of finite dimensional distributions are
gaussian.

Proof of Theorem 3. The fact that the processes {Z(t), t € T1},
{Z(t), t € T2} and {Z(t), t € T3} (given in Theorem 2 in weak sense)
are independent, makes possible the representation of them independently of
others.

First we note that in the case T, # {0} the representation of {Z(t), t € T3}
means to give a probability space with independent gaussian random variables
Z4+(v/2) and Z_(v/2) having zero expectations and variances Cy and C_, for
this reason it is enough to deal with the representation of processes {Z(t), t €
€Ty} and {Z(t), t € T3}, which we give in parts A) and B) respectively.

Since the processes {W(t), t € Ty} and {V(¢), t € T1} are independent,
therefore we can carry out their representation one by one. In both cases the
nature of representation depends on the smoothness of function E|X|*, t € T},
thus we need the following statement (we define 0 - log 0 = 0).

Lemma 1. Let U be a random variable. If for some natural number k > 1
and for some positive value b the condition

(15) E|U*log* |U|II(U # 0) < oo

is satisfied, then the function u(t) = E|U|* is k times continuously differentiable
on the interval (0,b] (at the point b it has left continuous derivative). If, in
addition, the condition

(16) E|log® |U||I(U # 0) < 0o
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holds, then u(t) is k times continuously differentiable from right at 0. In both
cases we have (in the corresponding interval)

(17) (u@®)Y = ElU'og U], 1<j<k.

Corollary 2. We get in special case analogous to (17) formulae for
the derivatives (on corresponding intervals) of functions E|X|*, E(X*)' and
E(X™)!, if the random variable U is replaced with random variables |X|, X+
and X~ respectively.

Proof of Lemma 1. Let a, c¢; and ¢y be positive constants, for which
the conditions 0 < a < b and 0 < ¢; < 1 < c; are satisfied. Let us form the
function E|U|*'log’ |U|, t € [a,b], 0 < j < k, as a sum of functions

ui(t; j, c1,¢2) = E|U[*log |U|I(c1 < U] < ¢2)

and
uz(t; j,c1,¢2) = E|U| log [U|(I(0 < U] < e1) + I(ez < |U])).

Since the function y* 1ogj y, ¢1 <y <eg, a<t<biscontinuous in the variables

t and y and its derivative with respect to t is uniformly continuous, the function
uy(t; 4, €1, c2) is differentiable and

d . i
(18) 'Jt'ul(t;J,Cl,Cz) = E|U|" log *! (U |I(c1 < |U| < ¢2).

Let us define the difference quotient for arbitrary t, t + h € [a,b], h #0

Apua(t; g, c1,c2) =

_E (|U|'+" log’ |U] - E|U|'log’ [U]

h (IO < |Ul<er)+I(ez < IUI)J)~

Let us denote t' = min(¢,t + h), t” = max(t,t + h). By the Lagrange
theorem (¢; < y < c¢2) for some k', 0 < h' < |h| it is valid the equation
tll_tl

y

o — ¢

following inequality

= y"l logy (here the value h’ depends on y), so we find the

|Anua(t; j,c1,c2)] <
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|U|¢”-tl
-t
< EUI [log** U] (10 < U] S e1) + (e < |U]) <

< E|U|* Jlog ** [U||1(0 < [U| < e1) + E|U|Plog’ *! |U|I(c2 < |U]).

< E|U|" log’ |U|

(10 < U] < e1) + I(ez < |U])) <

It is clear that the condition (15) implies the relation (0 < a < b)
E(U +UP) |1og’° |U|| < o0,

because of it the function Au(t; j, c1, c2) converges uniformly to zero as |h| —
— 0, ¢; — 0 and ¢; — 00. On the other hand, the j-th derivative of function
u3(t;0, ¢1, c2) tends to the right side of (17) as ¢; — 0, ¢; — 00, in consequence
of this the relation (17) holds on the interval [a,b] and it is also true on the
interval (0, b].

It is obvious that in the case, when condition (16) holds, the estimate (19)
remains valid with value a = 0 and in a similar manner we can obtain the
relation (17) (for right sided derivative) at the point 0.

Let us return to the representation of processes W(t) and V(t), which we
can derive independently of each other.

a) It is clear that there exists a gaussian random vector W = (W4, W_)
on some probability space with zero expectation and covariance matrix (8),
therefore it suffices to consider the deterministic functions E(X*)! and E(X ™)t
in the interval [0,7/2]. By assumption (1) we can get that for all natural

numbers k and arbitrary t € (0,7) it is true E|X|* Ilogk |X|i < 00, so

the continuity and differentiability of functions E(X*)! and E(X ™)' on the
corresponding interval follow immediately by Lemma 1.

b) By making use of the independence of processes V(t) and V_(t) it is
sufficient to consider one of them, say V,(t) (we assume in this case that the
condition p4 > 0 holds).

First we note that by the Kolmogorov consistency theorem and by [10]
(Theorems 2 and 5 of Chapter I11.2) there exists a separable gaussian process
{V4+(), t € Ti} on some probability space, it has zero expectation and
covariance function R4 (t,s). Here in consequence of smoothness of function
R4 (t,s) the process V,(t) is stochastically continuous and we can choose any
countable dense set in T as a separability set.

It remains to prove that the process {V4(t), t € (0,7/2)} has continuous
with probability 1 version, it is right continuous at 0 (resp. left at v/2) with
probability 1, when the additional condition holds. For this purpose it suffices
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to prove (see [10], Theorem 7, Chapter II1.5) that for arbitrary ¢, t + h € T}
the variance
oi(t,h) =

= E(V+(t + h) - V+(t))2 = R+(t + h,t + h) - 2R+(t,t + h) + R+(t,t) =
- [E (X+)2t+2h - E (X+)t+h E (X+)t+h] _

~2[B (X))~ E(x) ™ E(x*) ]+ [B(x*)* - B (x*) B (x*)']

has upper bound c|h| for some ¢ > 0. It is obvious that one can write 0% (1,1+h)
in the form

(20)
di(t,t-{—h) S IE (X+)2‘+2h_E(X+)2!+h|+ |E(x+)2f+h _E(X+)2t|+

+E (x+)** |E (xH)* -k (x+)‘| +E(X*) |E (xH)* _E (x+)’| .

Since in consequence of assumption (1) for all 8, 0 < B < v the expectation
E|X|? is finite, so by Lemma 1 follows that the derivative of function E (X +)'
is continuous in arbitrary closed interval [a, 2b] C (0,7) (a < b). The continuity
of derivative remains valid in the cases a = 0 and b = v/2, respectively, if the
additional conditions E|log|X|| < co and E|X|"|log|X|| < oo hold. From this
we get that the derivative is bounded by some constant ¢ > 0 in the interval
[a,b), and with help of the Lagrange theorem one can find for arbitrary ¢t,
t+ h € [a,b] the inequality 0% (t,2 + h) < c|h|, which remains true in the cases
a =0 and b = v/2, if the additional conditions hold.

We mention here that under conditions (1) and Elog? X, < oo one can
define by Lemma 1 a continuous with probability 1 gaussian stochastic process
{Vo(t), 0 <t < b} (0 < b < 4/2) with zero expectation and with covariance
function

o0 o0 (o 0]
/ Y+ log? ydF. (y) — / v logydF' (y) / ¥’ log ydF4 (y).
0 0 0

t
In this case the process V, (t) = pllz J Vo(s)ds is gaussian with zero expectation
0

and with covariance function R4(t,s), it is continuously differentiable with

probability 1 and the derivative process is pi/ 2Vg(t).
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Remark 7. By means of the above classical method (i.e. with the help
of investigation of expectation and covariance function) one can construct the
process {V4(t), 0 <t < v/2} in another way (see [3]):

Let {B(s), 0 < s < 1} be Brown-bridge on some probability space, then
the process {V4(t), 0 <t < v/2} can be represented in the form

Ve(®) = p? [ aB(FL )
1]

To consider the trajectories in this way does not seem easier (in particular at
the points 0 and v/2) than in the classical way.

Proof of part a) of Theorem 4. We show that the joint characteristic
function of random variables ¢(¢1),...,{(tm), 1/2 < t; < ... <ty < o0 can
be represented in the form (A = (A1,...,Ap) € RM):

M
E exp {iZAj((tj)} =f.(\t,1,1) =
j=1

= exp {/(exp{:’@(u,/\,t)} -1-il0<u< l)@(u,A,t))u‘zdu} ,
0

M
where ®(u, A, t) = Y Ajubs.
ij=1

Let us introduce the modified sequence of processes {{(t,n), 1/2 < t <
<oo},n>1:

1 n
((t,n) = / N(u)tu™'"'du + /(N(u) —u)tu~"'du+ 1.
1

1/n
It is clear that for each t € (1/2,00)

1/n
P / N@tu '"'du>0| = P(¥y <1/n)=1-€e"" 20, n—oo.
0
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Furthermore, for any € > 0 by the Markov inequality

s oo
P (/ IN () - ultu™"""du > 5) < 5-1E/ |N(u) — ultu='"du.
n n

By making use of the Fubini theorem and Cauchy-Schwarz inequality

oo oo
E/|N(u)—u|tu'1_'du=/E|N(u)—u|tu"1"du§
n

n
oo

< / (D*(N(u) - u))l/2 tu™!"'du =

n
(]

= /tu'l/2“’du =1(1/2 —t)" a2t 0,

n — 0o,

there is valid the {(t) —((t, n) A 0, n — oo, convergence in measure, so by the
Slutsky theorem (see [2], p.249) we obtain

M 4 M
Do Aidtn) S Y Al(E),  n— oo
i=1 i=1

Let us denote the corresponding characteristic functions by

M
7(A\t,n) = Eexp {iz ,\,-c(t,-,n)}
ji=1
and

M
T(\t) = Eexp {iz ,\,-c(t,-)} ,

i=1

then one can write

(21) lim 7(At,n) =7(A,t).

71— 00
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On the interval [1/n,n]

a —1 —l t;
7220 E,\ tjumtY,

from which as consequence of (21) we obtain the convergence

(A t,n)= Eexp{—i / N(u)b% (®(u=?, A, )) du+

1/n

+1 (/u—— (®(u~1,2 t))du+z/\ )}-»r(/\,t),

1 j=1

(22)

n — 00.

Let us consider the expressions appearing in the exponent. Since N(n) is finite
with probability 1, N(t) (¢t > 0) is monotone increasing and @ continuously
differentiable on the interval [1/n, n], so by using the rules of partial integration
of Riemann and Riemann-Stieltjes integrals we come to the identities

i [ e (Lot an) du-

1/n

=1 / ®(u~!, A, t)dN(u) — i (N(n)®(n~, )\, t) = N(n~1)®(n, A, 1)),
1/n

i/ (‘I>(u"1 A t))du+Z/\ = —1/<I’(u"1 A, t)du + in®(n~1 A t).

1 j=1

Since
P(Nm™ ) >0 =P <1l/n)=1-¢Y"50, n—ooo
and for arbitrary ¢ > 0 as n — oo

P(I(N(n) = n)®(n~",\,t)| > &) < e E|(N(n) — n)®(n™", )\, ¢)| <

< e Y(E(N(n) — n)2)?®(n=1 )\ t) = e~ 1n!/20(n"1, A, 1) — 0,
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using once more the Slutsky theorem we get that it is enough to investigate
the limit of function

n n
T (M\t,n) = Eexp i/q>(u-1,,\,z)d1v(u)-i/@(u—l,,\,t)du
1/n 1
as n — O0.

By definition N(t) is homogeneous Poisson process with intensity 1, and
®(u~!, A, s) is continuous function for the variable v in the interval [1/n,n], so
by [1] (Chapter V., Theorem II (p.175)) we have

i / ®(u~!, A, s)dN(u) = exp / [exp(®(u~", A, 5) — 1)] du
1/n 1/n

On the basis of these facts N
T (A s,n)=

n

= exp / (exp{i®(u~',A,5)} — 1) du — i/@(u'l,A,s)du =

1/n 1

n
= exp / [exp{i®(u, A, 8)} — 1 —iI(0 < u < 1)®(u, A, s)] u~2du
1/n
Since the expression in the exponent is absolutely integrable on (0, 00), it is

true the convergence

lim 7 (\,s,n) = lim (A, s,n) =
11— 00 n— oo

= exp {/ (exp{i®(u,A,s)} = 1 —il(0 < u < 1)®(u, A, 5)) u"zdu} .
0

Proof of part b) of Theorem 4. Let ¥ > 0 and C > 0 be arbitrary.
Using the characteristic function of finite dimensional distributions of process
¢(t) on the basis of formula (6) (the values tj, 1 < j < M satisfying the
condition 1/2 < t; < ... <ty < oo and A € RM are chosen on arbitrary way)

(A, t;9,C) =
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i=1

M M
= Eexp {iZAJ(‘Y.C(tJ’)} = Eexp {12 /\jC"/‘YC(tj/‘y)} =
i=1

= eXP{/ [exp{iz)\j(Cu)"/"} ~1-di(0<u< 1)2,\j(cu)z,/v} x
j=1 :

0 j=1

CMm
xu"ldu+ iC/Ez\ju'”u'zdu} = fe(A;t,7,C).
/ §

i=1

In order to prove the differentiability of process ((t) we need the following
lemma. Let us introduce the notations in case of arbitrary 1/2 < t < 0o

1
Gea(®) = [ N1+ lloguldu,
0
Cr2(t) = /IN(u)—u|u‘1-'(1+logu)"du.
1

Lemma 3. For arbitrary fized t € (1/2,00) and natural number k (i, (t)
and (g 2(t) are finite with probability 1, furthermore (i 1(t) is monotonely
increasing, (i 2(t) is monotonely decreasing with probablity 1.

Proof of Lemma 3. Since N(u) is monotonely increasing and on the
interval [0, ;) takes on the value 0, N(1) and ¥, are with probability 1 finite,
because of

1
Cen(t) < I(r < HN(1)(1+ 110g¢1|)"/u"“du <
("2
< I(¥1 < )N(1)(1 + |logyn |) 117"

(23)

Ck1(t) 1s with probability 1 finite.

Now we will deal with ( 2() and show that its expectation is finite. Since
the variance of homogeneous Poisson process N (u) with intensity 1 for arbitrary
u > 0 is equal to u, by making use of Fubini theorem and Cauchy-Schwarz
inequality we obtain

E¢e 2(t) = E/ IN(u) — uJu='"Y(1 + logu)k <
1
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o0 o]
/ E(N(u) - )1/2 w71 + log u)fdu = /u"'”"’(l + log u)*du < oo.
1 1

Thus Lemma 3 is proved.

Remark. From inequality (23) one can easily derive that for arbitrary
1/2 < t < 1 the expectation of random variable ( 1(t) is also finite.

Proof of part c) of Theorem 4. By using the monotonicity of (i 1(t)

and (i 2(t) from Lemma 3 follows that for the process ((¥)(t), defined by (12),
in arbitrary [a,b] C (1/2, 00) the inequality

ICB()] < (k +b) (Ce,1(b) + Ce2(a)),  tE[a,b]
takes place with probability 1. The first derivative of function tu~! by t is
(tu"‘) =u"!(1-tlogu),
and for k = 1,2,... there is true the relation

:% (u™¥(—logu)*~!(k — tlogu)) = u™*(—logu)*((k + 1) — tlog u),

so formula (12) can be obtained by induction. Consequently the process ((t)
on the interval (1/2, 00) is arbitrary many times differentiable by ¢ and the k-th
derivative process is ((¥)(¢).

To determine the characteristic function of finite dimensional distributions
we consider the formula (12) the k-th (k > 1) derivative process. In case 1/2 <
< t < 00 ((¥)(t) can be written in the form

. 1
¢® () = / N(u)u™ (= logu)*~1(k — tlog u)du+
0

+ /(N(u) —w)u" (= log u)f~(k — tlog u)du =

1 00
=/N(u)u—1-‘a%(u-'(logu-l)")du+/(N(u)-u)a% (u™*(logu™")*) du.
0 1
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This formula allows us to repeat the line of reasoning given by the proof of
part a) of Theorem 4 and we can obtain the characteristic function of finite
dimensional distributions of k-th derivative process ¢(¥)(t).

Proof of Theorem 5. By virtue of Theorems 1 and 3 the processes
Z()(t) and Z(t) are continuous with probability 1 on the given interval [a, b],

furthermore the weak convergence Z(™)(t) 4, Z(t), as n — oo is true, then by
[10] (Theorem 1 of Chapter VI.4) it is sufficient to prove for arbitrary ¢ > 0
the relation

lim sup P( sup {|Z_(,,")(t’) - Z(+")(t")|+
h—=0 pn TP SY

(24) t/ ¢! €la,b]
+120) - Z(_")(t”)} >e) =0,

which trivially holds when for arbitrary € > 0

lim sup P sup |Z(i")(t') - Z(;)(t")l >e| =0.
h—0 p TIPS
t/, 1" €la,b]

(25)

Since the processes Zi")(t) and Zf_n)(t) have the same structure, it suffices to

consider one of them, say Z(+")

P+ > 0)

First of all we note that in the case, when the supremum in parentheses
of (25) has finite expectation, then by the Markov inequality it is sufficient to
prove instead of (25) the relation

(t) (in this case we assume that C; > 0, i.e.

lim sup E sup |Z(;)(t') - Z(;)(i")l =0.
h—0 p Jt/ =t <h
t' t'"€la,b]

(26)

In the case [a,b] C (0,7/2) we will choose this way.
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The case [a,b] C (0,7/2)

It can be easily verified that for all, on the interval [a, b] twice continuously
differentiable functions g(t) the following inequality holds

" —g(t")| < h- (t)] <
sup |g(t') —g(t")| < tren[gfglly()l_

1t/ =t |<h
b
<h. (|g'(a)| + / |g"(u)|du) .

t/,1' €[a,b)
Since ZS_")(t) is infinitely many times differentiable with respect to ¢ on the
interval [a, b], then by (27)

(27) t

J'(a) + / ¢ (u)du

< h- max
- t€(a,b)

1t/ —t!"|<h
t! 1" €la,b)

<h-E {’(‘%Zi")(t))t:a du}.

For arbitrary t € [a,b] and for arbitrary natural k the random variables
{(XJ-’L)‘ log* (XJ"') -F (Xf)t log* (Xj+)}, n > 1 are independent identically

distributed with zero expectation and finite variance, by virtue of the Cauchy-
Schwarz inequality and Lemma 1 we get independently of n the inequality

1/2
&* & oy )
FA0)| < {E(;,;;Zi ) } <

<{[e () rogt 0t - B (e 1egt (0]} <

E( sup |zt - Zi")(t")l) <

b
2
+ / }d—uz,Zﬂr )(u)
a

E

<{B (™0 (x)} " < {B () + (x9) 10 (x4}

takes place, hence it follows that independently of n we have
(n)pr (n) 4
hE ( sup |2 - 20 )|) <

1t/ —t"|1<h
t/ 1! €la,b]
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<h{E[(x*)* + (x*)™] [tog? (X*) +log* (x*‘)]}”2 . as h—0.

The case [a,b] C (v/2,00)
Let us use the notations

X =XtD;', Xjn=X}'D;', n2>1, j=12,...,n

ere D, is defined by formula (4)), and let us form the process t) as sum
here D,, is defined by formul d let us form th z{M
of two processes

2 (t) = €M) + €M),

where
M) =€) = Y (Xt I(Xjn < 1) = EX}I(Xjn < 1)),
j=1
e7(t) = €0(t) = Y X4 I(Xjn 2 1)
i=1
Define
£P(t) =
dt n d
= 256700 = Y (Xialog® X;nl(Xjn < 1) = EX}nlog* Xjnl(Xjn < 1),

i=1

d* - '
60 = gE&"(0) = 3 X log’ Xjnl(X;n 2 1)
i=1

It is evident that the process fg',:)(t) is monotone increasing and for all v/2 <

< t < 00, k > 0 the inequality Eg',:)(t) < fg")(k + t) trivially holds. Hence, by
(27) follows
sup |Z2{7(t') - 2{0(")] <

1t/ =t/ <h
t/, 1/ gle,b)
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Sh-(ld (a)] + / €2(t) Idt) ("') )+ / TRl Idt)

('E“‘) )+ / l£§’?(:)ldt)+h (15 @1 + ¢ - D)l <

I/\

('6‘"’ a)l + / Ieﬁ?undt) +h-[(1+ (b - a))E§V (2 +b)].

In order to prove relation (25) it is sufficient to establish the next two
statements:

a) for arbitrary fized natural k there erists a constant K, for which
uniformly in n and t € [a,d]

(")(t)| < K;
b) for arbitrary € > 0 the relation
lim sup P (A 11+ -a)es” @ +b)] > e) =0

holds.

Proof of statement a). Let us estimate the value Elﬁ(")(t)l Since the
sequence of random variables

(x;,, log* X;jnI(X;jn < 1) = EX}, log* X;nI(X;n < 1)) :

n=12..., k>0

are independent identically distributed with zero expectation and finite vari-
ance, by the Cauchy-Schwarz inequality we can write

(EP0)) < E(€P0) =

2
=nE(ﬁnmgxmuxm<1y-5x;ngmuxm<1» <

D,
) 2t
< B (XZlog™ Xenl(Xen < 1)) = [ (Di) log?* (Di) a1 - F())
rd n n
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<-n 7(%)2 log™ () d1 - F(y) = - j 7% log™ yd(1 — F(Dyy).
0 0

The function y2®log?* y is differentiable on the interval (0,00) and tends to
zero as y — 0, with integration by part we get

1
(BIP@) <0 [ - FDw)ay tog* y =
0

1
= /n(l — F(Dny))y** ' log?* ' 2(a - logy + k)dy.
0

In consequence of condition (1) and the definition D,, it is valid D, L~1(D,) ~
~ n, as n — 00, hence for some constant K’ we can establish

1
2
(BIER@1) <204 [ 01— F(Duw)?*~"[1og™ y(a - logy + )ldy <
0

L(D, i}
<2/K' L((Dy) 2e=7=1|log?* ! y(a - log y + k)|dy.

By the inequality 2a > v and [17] (Theorem 2.7) the last integral asymptotically
(as n — 00) is equal to

1
2/ K'y* 71 log" "' y(a -logy + k)|dy,
0

so there exists a constant K = K(k), for which uniformly in n
(28) ElGP () < K.

Proof of statement b). The fact that the sequence of random variables
g")(2 +b),n =1,2,... has non-degenerate (infinitely divisible) limit distribu-
tion as n — oo, follows from condition (1), it is an immediate consequence of
the classical limit theorem (see [11], Theorem 1 of par.25). Hence it is known
(see [9], Chapter VIII.2) that in this case the sequence of random variables
§")(2+ b) is bounded in probability, which is established in statement b). This
completes the proof of Theorem 5.
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4. Example

Let w(t) be a continuous function on the interval [a,4] C (7/2,00). Assume
that condition (1) holds with the parameter C4 > 0. In consequence of
Theorem 5 the sequences of random variables

b
/ wt)Z{M(tydt, n=1,2,...

a
converge in distribution to the random variable represented in the form

b

/ w(t)Z4 (t)dt.

a

It is not difficult to prove that its characteristic function has the form

)
E exp {iA/w(t)Z+(t)dt} =

a

= exp{7C+ 7[exp (iA ] w(t)u‘dt) —1-iA[(0<u<1) ] w(t)u‘dt] u‘f‘jl }
0 a

Let us see now the special case, when w(t) > 0 holds for all ¢t € [a,b].
b
Denote by ¢~!(y) the inverse function of ¢(y) = [ w(t)y'dt then we can write

a
the characteristic function in the form

b )
E exp {iA / w(t)Z4 (t)dt} = exp {7C+ /[exp{iAv} -1- iAv]dQ(v)} ,

a 0

where .
Q) =-('@) ",  v>o.
It is clear that this distribution is infinitely divisible, but it is not stable.
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