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ON FAST FOURIER ALGORITHMS

F. Schipp (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on his fiftieth birthday

Abstract. In this paper we synthesize the various known FFT methods.
We show for a number of orthonormed systems, that the Fourier coeffi-
cients, similar to the Fast Fourier Transform, can be computed from a
more general algorithm. These orthonormed systems can be represented
as product systems of other systems which have a certain measurability
property. Fourier synthesis with respect to such systems can be made by
a fast algorithm. The various known FFT methods with respect to the
one- and multidimensional trigonometric and Walsh systems are special
cases of the method presented here. Moreover fast algorithms for certain
biorthogonal expansion are investigated.

1. Introduction

Sequences of numbers and functions are usually indexed by natural num-
bers or integers. In many questions connected with Walsh series and dyadic
harmonic analysis or with the FFT algorithm it is convenient to use the set of
p - adic intervals as an index set [15]. That is the set of intervals of the form

J? = {[p—li‘-,k;1> ;k:O,l,...,p"—l,nEN},

where N is the set of non-negative integers and p € N! := N\ {0,1}. In the
case p = 2 the elements of J? are called dyadic intervals and the set in question
is simply denoted by J. The length of an interval I € J? is denoted by |I| and
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the p-adic subintervals of I of the length |I|/p are denoted by Ip, I, ..., I,_;.
Let It denote the interval in J? with the length p|I| containing I and set

IR ={leJ?:|I|=p"} (n€eN).

Obviously (J;)* = J. To simplify notation, set J} := (J*); for
J € J?P and j € P, where

(1.0) P:={0,1,...,p—1} (peNh.
The set of complex-valued sequences indexed by J? is denoted by S?:
SP:={a=(aj,I€J?):aq1€C (IeJgn}.

There exist two types of first order difference equations for sequences in
SP. The decreasing type (D-type), can be given by a sequence of functions
Fr.C—C (I € JP) as follows:

a,:F'I(aH.) (Iejpylllsp—l)

Starting from the value a[g ;) the sequence (ar, I € J?) is uniquely defined by
these recurrence formulas.

To get increasing difference equations let us be given a sequence of
functions Gy : C? — C (I € JP). The system of equations

aI:GI(anraIu-“)aI,-x) (IGJP)

is called a first order difference equation of inceasing type ( I-type). Let N € N
be a fixed number. Starting from the initial values a; (I € J%) we obtain the
ap’s for |I| < p~" in (pV — 1)/(p — 1) steps.

In algorithms connected with FFT we use special double sequences indexed
by p-adic intervals of the form (ars,(I,J) € J? x JP) and recurrence formulas
increasing in I and decreasing in J. More exactly, for a fixed N € N let us be
given a sequence of functions

Frj:C? - C (IeJk_,,J €ITr,n=1,2,...,N).
The system of equations
(1.1)

ary =F]J(a101+,a11_,+,...,(11’_‘]4-) (IGJK,_”,JEJ,‘:,nz 1,2,...,N)

is called a first order partial difference equation of ID-type.
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Starting from the initial values
(1.2) arpyy (I €JR)
and applying the recurrence formulas (1.1) we get the values
(1.3) apy  (JE€TR)

in NpV steps. If the number of necessary operations (the cost ) of calculating
the functions Fyy is the same for every I,J (say a) then computing all the
values

ary (IeJgh_,, JEJE, n=1,2,...,N)

requires Np" o operations.

It is convenient to identify the set P™ with the set of numbers
Pm = {0,1,...,p™ — 1} via one of the next two maps. For k € P, with
the p-adic expansion

k=ko+kip+ ...+ kp_1p™} (k; € P)
define the map =, : P, — P™ by
(k) .= (ko, k1, .., km=1)
and the inverse of v, by
T-m(k) := (km=1, ..., k1, ko).

We identify the index sets in (1.1) with the set P?¥. To this end for each fixed
N € N\ {0} define the map

N
0:J Thon x Tp =NV

n=0
k k+1) [Z £+1)
as follows: For I = |——,—— ] and J = |[—,—— ] let
[pN—n pN—n n’ pn

(1.4) 6(1,J) :=(7-n(€), *N-n(k)) = (bn-1,..., 01, L0, ko, k1, ..., kN_n_1),
and for n = N and n = 0 set

(1.5) 8([0,1),7) := (m_n(€)) , 6(,[0,1)) := (mn(k)).
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It is easy to check forall T€e J§_,,, J€ JP and n=1,2,..., N that
(1.6) 0(1;,J%) = 0(1,J}).

IfJ€J" then J = Jj+ for some j € P and so via the map 6 and (1.6) we can

store the values of aj; = a;;+ obtained from (1.1) into the place of the values
J

ay,;j+ which are used on the right-hand side of (1.1). To store the initial values

(1.2) we need p" places. Using this method of storage one needs no more space
than that alloted for the initial values.

We show that a large class of function systems can be constructed with
algorithms of Fourier analysis and Fourier synthesis of the above type [1]-[9].

2. Product systems

For the description of the abovementioned algorithm, we use the notion of
conditional ezpectation [10], [15)].

We begin with the definition and some inportant properties of conditional
expectation. Let (X, A, u) be a probability measure space and B a sub-o -
algebra of A. For an arbitrary function f € L! := L}(X, A, u) we denote by
E(f|B) the conditional ezpectation of f with respect to B. The conditional
expectation can be characterized by the following two properties: E(f|B) is
integrable and B-measurable, i.e.

(2.1) E(f|B) € L*(X, B, u)

and for every B -measurable set B

(2.2) [ 1au= [ B218) dn
B

B

holds.

By the Radon-Nikodym theorem, the function E(f|B) satisfying the above
two properties exists and is unique up to a set of zero pg-measure, for any
integrable function f. It is known that the conditional expectation operator
L' 3 f — E(f|B) € L}(X,B, ) is bounded and linear, moreover for any pair
of functions A € L!(X, B, ) and f € L! such that Af € L!, we have

(2.3) E(M|B) = AE(f|B).
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Furthermore, for arbitrary o -algebras C C B C A the following equalities hold:
(2.4) E(E(f|C)|B) = E(E(fIB)IC) = E(fIC) (f€LY).

On the basis of (2.1) and (2.2) it is obvious that if B := {X, 0} is the trivial
o -algebra, then

25) E(f|B) = / fdu  (B:=1{X,0)),
X

i.e. the conditional expectation is a generalization of the notion of integral [10).
In the other special case if B = A then E(f|B) = f.

Conditional expectation can be used to generalize the concept of orthogo-
nality, biorthogonality, and Fourier coefficients [12]. A system ® := {¢, : n €
€ N} with function in L2 := L?(X, A, p) is called a B - orthonormal system if
forevery n,meN,m#n

E(¢m®,B) = bmn,

where 6., =0if m #n and §pnpy = 1 if m=n.
More generally, the systems ® and T := {u,,n € N} in L? are called
B-biorthogonal if for every m,n € N

(2-6) E(¢mvn|8) =bmn-
For any f € L? the B-measurable functions
(2.7) E(f$,1B) (n€N)

are called the B -Fourier coefficients of f with respect to the system &. If
B = {X,0} then the above definitions reduce to that of usual orthogonality,
biorthogonality and Fourier coefficients. Furthermore, by (2.4) and (2.5)

/ bmTn dp = E(E($mTnlB){X,0}) = Smun,
X

i.e. B-biorthogonal systems are biorthogonal in the usual sense.

A generalization of Bessel’s identity and the minimum property of Fourier
coefficients hold for B -orthogonal systems (see [12]).

In order to give the general form of FFT algorithms we consider systems
which are product systems of collections with certain measurability properties
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(with P and M properties) [13]-[15]. Let us be given a finite collection of
function systems

(2.8) ®,:={¢,:5€P} (neN,n<N),

where the complex-valued functions ¢/, are defined on X and N = 1,2,... .
We define the product system

¥ := {¢, :m € Pn}
as follows: for any natural numbers m € Py represented in the form

m=mg+mip+...+my_1p" ! (m, €P)

let
N-1

(P) ¥m = [] o7~
n=0

If the system ¥ is of the form (P) we say that ¥ has the P-property.
From (P) it follows that

(2.9) U= Go®;... O,

where the product of the function sets on the right hand side is defined in the
usual way.

To define the mentioned measurability property we fix a monotone increas-
ing sequence of o-algebras

Ao ={X,0}C A C..CAN.1CAN=A
and denote the conditional expectation operator with respect to A, by E,.
We shall say that a collection of systems (®,,n = 0,1,..., N — 1) has the
M;-property if the functions in ®,, are in L? and are A,4;- measurable, i.e.
(M) &, C LYX, Any1,8) (n=0,1,...,N—1).
If forn=0,1,...,N —1 the systems ®,, and T,, are A,-biorthogonal, i.e.

(M) E.(¢508) =61y (K, L€eP,n=0,1,...,N—1)

then we shall say that the systems in question have the Ms-property. The next
theorem gives a possibility to construct biorthogonal systems.
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Theorem 1. The product system of systems having properties M, and
M, is a biorthogonal system.

Proof. Denote by ¥ and I' the product system of the systems ®,, and
Tn (n=0,1,...,N = 1), respectively. If k # £ then there exists an index
7 €{0,1,...,N — 1} such that k; # ¢; and k; = £ if j < i < N. Write

ji-1 N-1
"y kit iy
veve = [ oFe o737 - [ wiad =By
i=0 i=j+1

and observe by (M;) that a is A;-measurable , 3 is .Aj4;1-measurable and by
(M3) that E;(8) = 0. On the basis of (M;), (M3), (2.3) and (2.4) we get

k; k; kn—1 kn-
Eip1(7) = Ej1(¢3W 73V Ejv2( - ENc1(ON T vS) - ) = 1

Consequently using (2.3) and (2.4) we get

[ e du= Bo(aE,(BE; () = 0
X

A similar argument shows that the integral in question is 1 if k = £.

It is important that properties P and M; (i = 1,2) are invariant with
respect the Kronecker product. Indeed, denote by

(f xg)(z,y) = f(z) g(y) (z€X,y€Y)
the Kronecker product of the function f : X — C and g : Y — C. For the two
collections of functions F := {f, : n € N'} and G := {gm : m € M} defined on
X and Y, respectively, we define the Kronecker product by
FxG:={faxgm:neEN,meM}.

Suppose that for j = 1,2 the systems W/ are the product systems of the
collections &4, (n =0,1,...,N — 1) , i.e. via (2.9) we have

V=& . & (=12
It is easy to check that

Ul x W2 = (@) x ®2) (@] x ®2)...(®N_, x B4 _,)
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and consequently ¥! x W2 is the product system of the systems ®. x ®2
(n =0,1,...,N — 1), i.e. the Kronecker product of systems having the P-
property, has also this property.

To prove the invariance of the M-properties, suppose that they are satisfied
for the systems &, (n = 0,1,...,N — 1) with the o-algebras A} (n =
=0,1,..., N —1). Then it is easy to see that for the collection ®} x ®Z2 (n =
=0,1,...,N - 1), M1 and M2 is satisfied with respect the collection of o-
algebras

Al x A2C A xA2C...CAN_, x A%_,.

3. Fourier analysis and synthesis

The Fourier coefficients of f € L? with respect to the product system ¥
can be written in the form

3.1)
~MN- <MN-1

fom) = [ £ du= Bo@5" @Y .. En-aBR7 Ena @i ) - ).
X

That is a consequence of the properties P and M; of the systems ®,’s (compare
(2.3) and (2.4)) [13].

Using (3.1), we can compute the Fourier coefficients of the functions
f € L? with respect to ¥ in the following way: first calculate the Ayx_; -
Fourier coefficients of the A,-measurable f with respect to ®y_; (there are p
of them), then the Ay_2-Fourier coffecients of each .Ax_;-measurable function
just obtained. Writing down the An_s-Fourier coefficients of the (An—2-
measurable, p?) functions with respect to the system ®x_3, obviously we get p?
functions, each being Ay _z-measurable. Continuing this procedure, we obtain
the p" Fourier coefficients f(m) at the N-th step.

For every n = 1,2,..., N the set of functions
ON_n PNont1-.-BPN-1

has p” elements which can be indexed by the intervals in JP. It is convenient

+1
pﬂ"'mp" )-EJ"‘J e

to do this in the following way: For each interval J =

set
— AMa=1  Ma-3 mo
'/’J = ¢N—n N-n4l " "¥N-1
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where the m;’s are the reverse digits of m, i.e. m = my_; + my_ 2P +. +
+mop™~!. The M;-property, (2.3) and (2.4) imply

~Mp-1

EN—n(fEJ) = EN—n(¢N -n EN—n+l(f'/’J+))

and
(3.2) f(m) = Eo(f,)

m m+1 _
( R ), m=mn_1+mN_op+ ...+ mop" 1)-

Obviously m,_; = £ if and only if J;}} = J and consequently

(3.3) EN-n(f;) = EN-n(#N_n EN-ns1(fP1+))
(JeJgr, Jr=J n=12,...,N).

To get an algorithm of the form (1.1) we choose a special kind of o-algebras.
We suppose that the o-algebras in question are atomic and every atom of A, is
the union of p atoms, belonging to An41. In this case the Boolean structure of
the collection of o-algebras is the same as that of p-adic intevals, which will be
called p-atomic structure. Therefore it is convenient to index the atoms of A4,
by the intervals of JP. Using this identification, the conditional expectation
of an A, ;i-measurable function g with respect to A,, can be expressed in the
form

(3.4) (En(9))s= >, arpr (JeEA),

Iegr,, IcJ

where g; is the value of g on the atom indexed by I and py is the y-measure
of this atom in question.

According to (1.1) it is convenient to denote the value of the function

EN_n(f¥;) at the atom I by f;;. Then (3.4) implies that (3.3) is equivalent
to

p—1
(35) fuu=)_ fr,+ ¢fv_n(1j)/’1,- IeJ§_,.,J€TP,n=12,...,N)
j=0

where 31,_,,(1,-) denotes the (common) value of the function ¢%,_, at the points
of the atom indexed bi I;. Thus we get
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Theorem 2. Suppose that the collection of o-algebras A,,n=10,1,... N
has a p-atomic structure and for the systems ®,, n = 0,1,...,N -1 (M,)
satisfies. Then the Fourier coefficients with respect to the product system ¥ can
be obtained as the solution of the following initial value problem with respect to
the linear partial difference equation of ID-type:

p-1
fIJ=ZaJ[JfI,‘J+ (IGJK/_,,,JGJK:"=1,2,~-,N)

Jj=0
where . .
apy = bnoalli) o1, (I =JF).
Starting with the function values
fl[o,l) =fr (I1€JR)

we get the Fourier coefficients in (3.4):

f(m) = fipyy (J €TR)

To compute the sum

(3.6) S= z ar Y,

k€PN
i.e. make Fourier synthesis, we introduce the notations

: 1+ 1
(3.7) SI[O,I) = a (I = [;:v,%) , 1€ 'PN) .

Obviously the Sy[o,1)’s are Ap-measurable. Using recursion, we define
=l
Sr:=Y Sié.,_, (I€J§_,, n=12,...,N)
3=0

If the collection of systems ®, (n = 0,1,..., N —1) has the M,-property then
I € A, _,, implies the Ap-measurability of S; for n = 1,2,..., N. If we denote
the value of St at the atom J € JP by S1; then we get the following recurrence
of ID-type:

p—1 ]
(38) Su=)_ Spydh_(J) IeAy_,, JEA, n=12,. . ,N)

j=0
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It is easy to see that Spg 1)s is the value of S at the atom corresponding to
J e Jk.

Theorem 3. Suppose that for the systems &,,n=0,1,...,N—-1(M;) is
satisfied. Then the partial sum S in (3.6) with respect to the product system ¥
can be obtained as the solution of the an initial value problem with respect the

linear partial difference equation of ID-type (3.8). The initial values are given
by (3.7) and the value of S at the atom corresponding to J is So,1)s.

4. Examples

By a suitable choice of the system ®, and the o-algebras, we can obtain
every known FFT method. In what follows, we present some of them.

4.1. Independent systems. Suppose that the systems ®, C L2

(n = 0,1,...,N — 1) are independent and orthonormed in the usual sense
in L2, Let Ao = {X,0} and let A, denote the o-algebra generated by the
systems ®; ( =0,1,...,n —1). Since in this case

En(83:) = [ 640 du=tu,
X

(M;) and (M,) are satisfied and (1.1) can be applied to the product system,
provided that A has a p-atomic structure [13] .

Let us examine the following special cases.

4.2. Walsh-Paley system. Let X :=[0,1) and let r, denote the n-th
Rademacher function (n = 0,1,...). If A, is the o -algebra generated by the
dyadic intervals of J,, then conditons (M;) and (M;) are satisfied for the
systems ®, := {1,7,}. The product system of these systems is the Walsh
system in Paley’s ordering [11]. Thus algorithm (1.1) can be applied for the
Walsh-Paley system and it is known as the Fast Walsh Transform algorithm
(1].

4.3. Walsh system. The original Walsh system (see [15]) can be
.obtained as product system of the systems

&g := {1,705}, ®n:={l,rarn_1} (n=1,2,...).

Obviously, if A, is the same as before, than (M) and (M,) is satisfied and the
method (1.1) is usable.
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4.4. Walsh-Kaczmarz system, Hadamard transform. Fix N €
€ N! and denote ®,, := {1,ry_n-1} (n =0,1,...,N — 1). These systems are
independent, the o-algebra Ay is generated by the intervals in Jy and we get
a special case of the example in 4.1. The Fourier transform with respect to this
system is the same as the Hadamard trensform [15).

4.5. Multiple Walsh systems. On the basis of the previous sections
the multiple Walsh systems (corresponding to the Paley, the original or the
Kaczmarz ordering) are product systems for which (M;) and (M3) are satisfied.
Consequently, (1.1) can be used in multiple Walsh analysis and synthesis.

4.6. Chrestenson systems. It is easy to check that Chrestenson systems
are special cases of systems considered in 4.1 with o-algebras, having p-adic
structure [15].

4.7. The trigonometric systems. Let
en(z) := exp(2minz) (z €[0,1), n €N, i:=+v-1)

denote the complex trigonometric system. This system is orthonormed with
respect to the Lebesgue measure on [0,1). The discrete trigonometric system
can be obtained as the restriction of the functions e, (n € Py) to the set

k
X:={2—N:k€PN}

and it is an orthonormed system with respect the measure u defined by
p({z}) := 27N (z € X). The product system of the systems

(4.1) ®, :={l,ean-a21} (n=0,1,...,N=-1)

is an arrangement of the system (e,,n € Py).

Indeed, let T := my_1 + my—22 + ...+ mo2V~1 denote the reverse of
m:=mog+m2+...+my_12V-1 € Pn. Since

mo _m mryo1 _ omo2V  dmi 2V % mney
€aN-1€qN-3 - - - €q0 =e = em,

therefore the product system of the systems in (4.1) is (em, m € Pn).

We show that (M;) and (M,) are satisfied. For n = 0,1,..., N let A,
denote the o-algebra generated by the atoms A% (k € P,,), where

k £
Al :={-2W+2N——n: ZE'PN—n}-
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It is easy to see that
AL UATE = AF (kePa,n=0,1,...,N-1),

i.e. the collection (A,,n = 0,1,..., N) has a dyadic atomic structure. Since
ean-n—1 is constant on the atoms of Ap41 the condition (M;) is satisfied.
Moreover, from

ean-n-i(Ahyy) = —en-ns (A2FF) (n=0,1,..,N -1)

it follows that (M3) holds. Thus algorithm (1.1) can be applied for the discrete
trigonometric system and it is known as the FFT algorithm of Cooley and
Tukey [5].

4.8. The multiple trigonometric systems. On the basis of Section
2 the multiple trigonometric system (corresponding to the reverse ordering) is
a product system for which (M;) and (M;) are satisfied. Consequently (1.1)
gives a fast algorithm for trigonometric multiple Fourier analysis and synthesis.

Other examples can be found in {13] and [14].
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