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CHARACTERIZATION OF PAIRS
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Abstract. In this paper we give a complete characterization of those pairs
of additive functions with values in compact Abelian groups which satisfy
some regularity properties. Our result improves some results of [6] and [8]
concerning this problem.

1. Introduction

Let G be an additively written, metrically compact Abelian topological
group, IN be the set of all positive integers. A function f : IN — G will be
called completely additive, if

f(nm) = f(n) + f(m)

holds for all n, m € IN. Let Ay denote the class of all completely additive
functions f : IN — G.

Let A > 0 and B # 0 be fixed integers. We shall say that an infinite
sequence {z,},., in G is of property D[A, B] if for any convergent subsequence
{zv.}o2, the sequence {z4,,+B};., has a limit, too. We say that it has
property E[A, B]if for any convergent subsequence {z4,,+B},., the sequence
{z,.}>, is convergent. We shall say that an infinite sequence {z,},-, in G
is of property A[A, B] if the sequence {z4,+8 — z,},; has a limit.

Let A% (D[A, B]), A;(E[A, B]) and A% (A[A, B]) be the classes of those
[ € Ag for which {z, = f(r)}S%, is of property D[A, B], E[A, B] and A[A, B],
respectively.
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It is obvious that

AG(A[A, B]) € AG(D(A, B]), AG(A[A, B]) € AG(E[4A, B)).

Z.Daréczy and I.Kdtai proved in [1] that

c(AlL,1)) = Ag(D[1, 1)),

and by using the result due to E.Wirsing, in [2] they deduced the following
assertion: If f € A%(D[1,1]), then there exists a continuous homomorphism
® : R, — G, where R, denotes the multiplicative group of the positive reals,
such that f(n) = ®(n) for alln € IN.

For the case A = 2 and B = -1 the complete characterization of
A% (D[2,-1]) and AL (A[2, —1]) has been given by Z.Daréczy and 1.Katai [4],
[6). The basic idea of their proof is to reduce the condition f € Ag(D[2,—1])
to the relation

f@Cn+1)-f(2n—-1)—>0 as n—o00

and apply the modification of Wirsing’s theorem.

In [7] and [8] we have given a complete determination of AZ(E[A, B]),
&(D[A, B]) and A% (A[A, B]). We proved the following results:

Theorem A. ([7]) For any fized integers A > 0 and B # 0, we have
AG(E[A, B]) = AG(A[4, B)).
If
f € AG(E[A, B]) = AG(A[A, B)),
then there exists a continuous homomorphism ® : R, — G, R. denotes the
maultiplicative group of the positive reals, such that f is a restriction of ® on
the set IN, i.e.
f(n) = &(n)

forallne IN.

Conversely, let ® : R, — G be arbitrary continuous homomorphism. Then
the function

f(n) :==®(n) (forall ne€IN)
belongs to AG(E[A, B)) = Az (A[A, B)).
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Theorem B. ([8]) Let A > 0 and B # 0 be fized integers for which
(A,B) = 1. If f € AL(D[A, B]), then there are U € Ay and a continuous
homomorphism ® : R, — G, where R, denotes the multiplicative group of the
positive reals, such that
(1) f(n) = ®(n) + U(n) for alln € IN.

(II) U(n+ A) =U(n) for alln € IN,(n,A) = 1.
(III) If X,, T denote the set of all limit points of {®(n) | n € IN} and

{U(n) | n € IN}, respectively, then

XinT = {0}
and T is the smallest closed group generated by
{Um)| 1<m< A, (mA)=1} U {U(p) | p isprime, p|lA}.

Conversely, let & : R, — G be an arbitrary continuous homomorphism, X, be
the smallest compact subgroup generated by {®(n) | n € IN}. Let U € Ay be
so chosen that U(n + A) = U(n) for alln € IN, (n,A) = 1 and the smallest
closed group T' generated by U(IN) has the property Xy NT = {0}. Then the
function

f(n) :=®(n)+U(n) (nelN)

belongs to Ag(D[A, B)).
Let G; and G be additively written, metrically compact Abelian topolog-
ical groups. Let A > 0 and B # 0 be integers. In the following we shall denote

by Ag, g,(D[A, B]) the class of all completely additive functions ¢, € Ag,
and p; € Ag,, which have the following property:

If
ullﬂgo ¢l(nu) =9 (g € Gl)r

then the following limit exists:

lim p3(An, + B) = h (h € Go).
V—+00

In this case we shall write (¢1,92) € Ag, ¢,(D[4, B]). It is obvious that in
the case G; = Gy = G we have

(¢, ) € Az g(D[A, B]) is equivalent to ¢ € AG(D[A, B]).

In [3], [6] Z.Daréczy and I.Katai considered some problems concerning
characterizations of pairs of additive functions with regularity properties. For
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example, under the condition that G, is a Ty group, the class Ag, ;. (D[1, -1])
was completely characterized in [6).
We can extend Theorem B as follows:

Theorem. Let G; and G, be additively written, metrically compact
Abelian topological groups and let A > 0 and B # 0 be fized integers for which
(A,B)=1.1If

(1,92) € AG,,6,(D[A, B]) and (p2,¢1) € Ag, 6,(D[4, B)),

then for each i € {1,2} there are U; € Ag;, and a continuous homomorphism
®; : R. — G;, R. denotes the multiplicative group of the positive reals, such
that

(a) pi(n) = ®;(n) + Ui(n) for alln € IN.
(b)) Ui(n+ A) = U;i(n) for alln € IN,(n, A) = 1.
(c) If X}, T denote the set of all limit points of {®i(n) | n € IN} and
{Ui(n) | n € IN}, respectively, then
X:NnT; = {0}
and T; is the smallest closed group generated by

{Ui(m) | 1<m < A,(m,A)=1} U {Ui(p) | p is prime, p|A}.

(d) There ezists a topological isomorphism ¥ : X; — X3 such that ¥®, = ®,.

Conversely, for each i € {1,2} let &; : R. — G; be an arbitrary
continuous homomorphism, X} be the smallest compact subgroup generated by
{®i(n) | n€ IN}. LetU; € Ag, be so chosen that Ui(n+ A) = Ui(n) foralln €
€ IN, (n,A) = 1 and the smallest closed group I'; generated by U;(IN) has
the property X! NT; = {0}, furthermore let ¥ : X} — X3 be a topological
isomorphism such that ¥®, = &,. Then

pi(n) := ®i(n) + Ui(n) (n € INV)
satisfy

(‘P1,¢2) € A&I,G;(D[At B]) and ($02, Y’l) € A&,,G,(D[Ar B])
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2. Proof of the theorem

In the following we assume that G; and G, are additively written,
metrically compact Abelian topological groups. Let A > 0 and B # 0 be
fixed integers for which (A, B) = 1. Assume that

(p1,92) € AG,,6,(D[A, B]) and (p2,¢1) € Ag, ¢,(D[A, B)).

It is easy to show that
{ 6.,G62(DIA, B)) € A5, 6,(D[A, 1))

A%,.6,(D[4, B]) C Ag, 6,(D[A,1)).

(1)

For each k € IN we shall denote by X = X! (resp. X5 = X[ ) the set of

limit points of {p;(kn+1) | n € IN} (resp. {p2(kn+1)|n€ IN}),ie g€ X}
if there exists a sequence

m<..<n,<... (n, €N),

for which

pilkn, +1) —-g as v — oo.
By using Theorem (9.16) of [9], it can be proved as in [8] that for each k € IN
and i € {1,2} the set X is a compact subgroup in G; and g;(kn + 1) € X}
foralln € IN.

For each i € {1,2} let X; := X} and X! := XA. Let g € X, and
p1(ny) — g as v — oo. Then, by using (1), it follows that the sequence
{p2(An, +1)}52, is convergent. Let p2(An, +1) — ¢, (¢’ € X3). It is easily
seen that g’ is determined by g, and so the correspondence

Hy:9g—4¢ (g€ X1, €X3)

is a function. Similarly, if h € X2, p2(my) — h as u — oo, then the following
limit exists:

lim ¢1(Am, +1) :=h'.

p—s00

The correspondence
Hy:h— b’ (hEXg,h’ EXI‘)

is a function. The following assertion can be proved easily by using the same
method as was used in [1].
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Lemma 1. The functions Hy : X; — X3 and Hy : X2 — X} are
continuous, furthermore

H;(X1)=X; and Hz(Xg):Xl..

For each g € X; we denote by X3(g) C X the set of accumulation points
of {p2(n,)}52,, while p1(n,) — g as v — o0, i.e. h € X3(g) if there exists a
sequence
n,<..<n,;<... (jJE€N)

for which
pa(ny;) = h as j— 0.

Similarly, we define the set X;(h) C X, for each h € X, as the set of limit
points of {¢1(m,)}S%,, if p2(m,) — h.
The following lemma is a key of our proof.

Lemma 2. We have

(2) Hi(g + X1(h) + ¢1(A)) + Hi(g) = Hilg + H2(h + Hi(9))]
and
(3) Ha(h + X2(9) + p2(A)) + H2(h) = Ha[h + Hi(g + H2(h))]

for all g € X, and h € X5, where
Hi(g + X1(h) + ¢1(4)) := {Hi(9 + ¢' + v1(4)) | ¢' € X1(h)},

Ha(h + X1(g) + ¢2(A)) := {Ha(h+ K + p2(4)) | K € Xa(g)}.
Proof. Let ¢ € X; and h € X3 be arbitrary elements. Let

n<...<n,<... and m<...<m<... (n,, m, €N)

be such sequences for which ¢;(n,) — ¢ and p2(m,) — h as v — oo.
By applying the following relations

(A%n,m, + 1)(An, + 1) = An,[Am,(An, + 1)+ 1] + 1,

(A%myn, +1)(Am, +1) = Am, [A(Am, + 1)+ 1]+ 1

and using the definitions of H;, Hs, Xi(h) and X2(g) we get immediately that
(2) and (3) hold. The proof of Lemma 2 is finished.
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Lemma 3. There are go € X1 and ho € X2 such that
Hy(go) = H2(ho) =0 and go € X;(ho).

Proof. Let S (C X7) denote the set of all limit points of sequences
{p1(An, +1)}52, while p2(An, +1) — 0 as v — 0. By using Theorem (9.16)
of [9], it can be proved as in [8] that S is a closed semigroup in X}, consequently
S is a compact group. Therefore 0 € S, i.e. there is a sequence {N, }52, such
that

¢1(AN, +1) =0, ¢2(AN, +1) =0 as V', ,v— o0

for some subsequence {v'} of {rv}. Let {v"'} C {v"} C {v'} be suitable
rarefactions of {1’} such that

p1(Nym) — go € Xy, p2(Nyn) — ho € Xa.

Then Hy(go) = H2(ho) = 0 and go € X1(ho). This completes the proof of
Lemma 3.

Lemma 4. We have
(4) Hy(—p1(A)) = H2(—p2(A)) = 0.
Proof. Let ¢ € {1,2} be a fixed integer and let
E(pi) := {e € Xi | Hi(e) = 0}.

Since X! is a group, therefore 0 € X;. Thus, it follows from Lemma 1 that
there is at least one g for which H;(g) = 0. Then E(yp;) # 0.

First we note from (3) that
(5) Hi(er + Xi(e2) + ¢1(4)) =0 if Hi(er) = Ha(e2) = 0.

Let go € E(y1) and hg € E(p2) be the elements determined in Lemma 3.
By using (5) and induction on k, one can deduce that

(6) Hy(kgo + (k — 1)p1(A4)) =0

holds for all k € IN, which with the method used in the proof of Lemma 4 in
(8] implies that (6) also holds for all integers k. In the case when k = 0 we
have Hl(—tpl(A)) =0.

In the same way, we also obtain that Hz(—¢2(A)) = 0. Lemma 4 is proved.
Now we prove the Theorem.
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We apply (3) with ¢ = —¢1(A) and use Lemma 4, we have
Hi[X1(h)] = Hi[H2(h) — ¢1(A)] for all h € X,.
This with the definitions of H, and X (k) shows that if ¢2(m,) — h, then
p2(Am, + 1) — Hi[H2(h) — ¢1(A)],

i.e.
o2 € A, (DIA, 1).

Similarly, we have
p1 € Ag, (D[4, 1]).

From Theorem B, for each i € {1,2} there is U; € Ay, and a continuous
homomorphism ®; : R. — G; which satisfy the parts (a), (b) and (c) of our
theorem. It is easy to show that the correspondence ®;(n) — ®3(n) (n € IN)
generates a topological isomorphism ¥ between X{ and X3 and ¥®, = ®,.

The converse assertion is true as well. The proof of the theorem is finished.
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