CHARACTERIZATION OF PAIRS OF ADDITIVE FUNCTIONS WITH VALUES IN COMPACT ABELIAN GROUPS

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on the occasion of his fiftieth birthday

Abstract. In this paper we give a complete characterization of those pairs of additive functions with values in compact Abelian groups which satisfy some regularity properties. Our result improves some results of [6] and [8] concerning this problem.

1. Introduction

Let G be an additively written, metrically compact Abelian topological group, $I\!N$ be the set of all positive integers. A function $f:I\!N\to G$ will be called completely additive, if

$$f(nm) = f(n) + f(m)$$

holds for all $n, m \in \mathbb{N}$. Let \mathcal{A}_G^* denote the class of all completely additive functions $f: \mathbb{N} \to G$.

Let A>0 and $B\neq 0$ be fixed integers. We shall say that an infinite sequence $\{x_{\nu}\}_{\nu=1}^{\infty}$ in G is of property D[A,B] if for any convergent subsequence $\{x_{\nu_n}\}_{n=1}^{\infty}$ the sequence $\{x_{A\nu_n+B}\}_{n=1}^{\infty}$ has a limit, too. We say that it has property E[A,B] if for any convergent subsequence $\{x_{A\nu_n+B}\}_{n=1}^{\infty}$ the sequence $\{x_{\nu_n}\}_{n=1}^{\infty}$ is convergent. We shall say that an infinite sequence $\{x_{\nu_n}\}_{\nu=1}^{\infty}$ in G is of property $\Delta[A,B]$ if the sequence $\{x_{A\nu+B}-x_{\nu}\}_{\nu=1}^{\infty}$ has a limit.

Let $\mathcal{A}_G^*(D[A,B])$, $\mathcal{A}_G^*(E[A,B])$ and $\mathcal{A}_G^*(\Delta[A,B])$ be the classes of those $f \in \mathcal{A}_G^*$ for which $\{x_{\nu} = f(\nu)\}_{\nu=1}^{\infty}$ is of property D[A,B], E[A,B] and $\Delta[A,B]$, respectively.

It is obvious that

$$\mathcal{A}_G^*(\Delta[A,B]) \subseteq \mathcal{A}_G^*(D[A,B]), \quad \mathcal{A}_G^*(\Delta[A,B]) \subseteq \mathcal{A}_G^*(E[A,B]).$$

Z.Daróczy and I.Kátai proved in [1] that

$$A_G^*(\Delta[1,1]) = A_G^*(D[1,1]),$$

and by using the result due to E.Wirsing, in [2] they deduced the following assertion: If $f \in \mathcal{A}_G^*(D[1,1])$, then there exists a continuous homomorphism $\Phi: R_* \to G$, where R_* denotes the multiplicative group of the positive reals, such that $f(n) = \Phi(n)$ for all $n \in \mathbb{N}$.

For the case A=2 and B=-1 the complete characterization of $\mathcal{A}_G^*(D[2,-1])$ and $\mathcal{A}_G^*(\Delta[2,-1])$ has been given by Z.Daróczy and I.Kátai [4], [5]. The basic idea of their proof is to reduce the condition $f \in \mathcal{A}_G^*(D[2,-1])$ to the relation

$$f(2n+1) - f(2n-1) \rightarrow 0$$
 as $n \rightarrow \infty$

and apply the modification of Wirsing's theorem.

In [7] and [8] we have given a complete determination of $\mathcal{A}_G^*(E[A, B])$, $\mathcal{A}_G^*(D[A, B])$ and $\mathcal{A}_G^*(\Delta[A, B])$. We proved the following results:

Theorem A. ([7]) For any fixed integers A > 0 and $B \neq 0$, we have

$$\mathcal{A}_G^*(E[A,B]) = \mathcal{A}_G^*(\Delta[A,B]).$$

If

$$f \in \mathcal{A}_G^*(E[A,B]) = \mathcal{A}_G^*(\Delta[A,B]),$$

then there exists a continuous homomorphism $\Phi: R_* \to G$, R_* denotes the multiplicative group of the positive reals, such that f is a restriction of Φ on the set IN, i.e.

$$f(n) = \Phi(n)$$

for all $n \in IN$.

Conversely, let $\Phi:R_* o G$ be arbitrary continuous homomorphism. Then the function

$$f(n) := \Phi(n)$$
 (for all $n \in IN$)

belongs to $\mathcal{A}_{G}^{*}(E[A,B]) = \mathcal{A}_{G}^{*}(\Delta[A,B]).$

Theorem B. ([8]) Let A > 0 and $B \neq 0$ be fixed integers for which (A, B) = 1. If $f \in \mathcal{A}_G^*(D[A, B])$, then there are $U \in \mathcal{A}_G^*$ and a continuous homomorphism $\Phi : R_* \to G$, where R_* denotes the multiplicative group of the positive reals, such that

- (I) $f(n) = \Phi(n) + U(n)$ for all $n \in \mathbb{N}$.
- (II) U(n+A) = U(n) for all $n \in \mathbb{N}$, (n, A) = 1.
- (III) If X_1 , Γ denote the set of all limit points of $\{\Phi(n) \mid n \in I\!\!N\}$ and $\{U(n) \mid n \in I\!\!N\}$, respectively, then

$$X_1 \cap \Gamma = \{0\}$$

and Γ is the smallest closed group generated by

$$\{U(m) \mid 1 \le m \le A, (m, A) = 1\} \cup \{U(p) \mid p \text{ is prime}, p|A\}.$$

Conversely, let $\Phi: R_* \to G$ be an arbitrary continuous homomorphism, X_1 be the smallest compact subgroup generated by $\{\Phi(n) \mid n \in I\!\!N\}$. Let $U \in \mathcal{A}_G^*$ be so chosen that U(n+A) = U(n) for all $n \in I\!\!N$, (n,A) = 1 and the smallest closed group Γ generated by $U(I\!\!N)$ has the property $X_1 \cap \Gamma = \{0\}$. Then the function

$$f(n) := \Phi(n) + U(n) \quad (n \in IN)$$

belongs to $\mathcal{A}_{G}^{*}(D[A,B])$.

Let G_1 and G_2 be additively written, metrically compact Abelian topological groups. Let A>0 and $B\neq 0$ be integers. In the following we shall denote by $\mathcal{A}_{G_1,G_2}^*(D[A,B])$ the class of all completely additive functions $\varphi_1\in\mathcal{A}_{G_1}^*$ and $\varphi_2\in\mathcal{A}_{G_2}^*$, which have the following property:

If

$$\lim_{\nu\to\infty}\varphi_1(n_\nu)=g\qquad (g\in G_1),$$

then the following limit exists:

$$\lim_{\nu\to\infty}\varphi_2(An_{\nu}+B)=h\qquad (h\in G_2).$$

In this case we shall write $(\varphi_1, \varphi_2) \in \mathcal{A}^*_{G_1, G_2}(D[A, B])$. It is obvious that in the case $G_1 = G_2 = G$ we have

$$(\varphi,\varphi)\in \mathcal{A}_{G,G}^*(D[A,B])\quad \text{is equivalent to}\quad \varphi\in \mathcal{A}_G^*(D[A,B]).$$

In [3], [6] Z.Daróczy and I.Kátai considered some problems concerning characterizations of pairs of additive functions with regularity properties. For

example, under the condition that G_1 is a T_0 group, the class $\mathcal{A}^*_{G_1,G_2}(D[1,-1])$ was completely characterized in [6].

We can extend Theorem B as follows:

Theorem. Let G_1 and G_2 be additively written, metrically compact Abelian topological groups and let A > 0 and $B \neq 0$ be fixed integers for which (A, B) = 1. If

$$(\varphi_1, \varphi_2) \in \mathcal{A}_{G_1, G_2}^*(D[A, B])$$
 and $(\varphi_2, \varphi_1) \in \mathcal{A}_{G_2, G_1}^*(D[A, B]),$

then for each $i \in \{1,2\}$ there are $U_i \in \mathcal{A}_{G_i}^*$ and a continuous homomorphism $\Phi_i : R_* \to G_i$, R_* denotes the multiplicative group of the positive reals, such that

- (a) $\varphi_i(n) = \Phi_i(n) + U_i(n)$ for all $n \in \mathbb{N}$.
- (b) $U_i(n+A) = U_i(n)$ for all $n \in IN, (n, A) = 1$.
- (c) If X_i^* , Γ_i denote the set of all limit points of $\{\Phi_i(n) \mid n \in IN\}$ and $\{U_i(n) \mid n \in IN\}$, respectively, then

$$X_i^* \cap \Gamma_i = \{0\}$$

and Γ_i is the smallest closed group generated by

$$\{U_i(m) \mid 1 < m < A, (m, A) = 1\} \cup \{U_i(p) \mid p \text{ is prime}, p|A\}.$$

(d) There exists a topological isomorphism $\Psi: X_1^* \to X_2^*$ such that $\Psi \Phi_1 = \Phi_2$.

Conversely, for each $i \in \{1,2\}$ let $\Phi_i : R_* \to G_i$ be an arbitrary continuous homomorphism, X_i^* be the smallest compact subgroup generated by $\{\Phi_i(n) \mid n \in I\!\!N\}$. Let $U_i \in \mathcal{A}_{G_i}^*$ be so chosen that $U_i(n+A) = U_i(n)$ for all $n \in I\!\!N$, (n,A) = 1 and the smallest closed group Γ_i generated by $U_i(I\!\!N)$ has the property $X_i^* \cap \Gamma_i = \{0\}$, furthermore let $\Psi : X_1^* \to X_2^*$ be a topological isomorphism such that $\Psi\Phi_1 = \Phi_2$. Then

$$\varphi_i(n) := \Phi_i(n) + U_i(n) \quad (n \in IN)$$

satisfy

$$(\varphi_1, \varphi_2) \in \mathcal{A}_{G_1, G_2}^*(D[A, B])$$
 and $(\varphi_2, \varphi_1) \in \mathcal{A}_{G_2, G_1}^*(D[A, B])$.

2. Proof of the theorem

In the following we assume that G_1 and G_2 are additively written, metrically compact Abelian topological groups. Let A > 0 and $B \neq 0$ be fixed integers for which (A, B) = 1. Assume that

$$(\varphi_1, \varphi_2) \in \mathcal{A}_{G_1, G_2}^*(D[A, B])$$
 and $(\varphi_2, \varphi_1) \in \mathcal{A}_{G_2, G_1}^*(D[A, B])$.

It is easy to show that

(1)
$$\begin{cases} \mathcal{A}_{G_{1},G_{2}}^{\star}(D[A,B]) \subseteq \mathcal{A}_{G_{1},G_{2}}^{\star}(D[A,1]) \\ \mathcal{A}_{G_{2},G_{1}}^{\star}(D[A,B]) \subseteq \mathcal{A}_{G_{2},G_{1}}^{\star}(D[A,1]). \end{cases}$$

For each $k \in \mathbb{N}$ we shall denote by $X_1^k = X_{\varphi_1}^k$ (resp. $X_2^k = X_{\varphi_2}^k$) the set of limit points of $\{\varphi_1(kn+1) \mid n \in \mathbb{N}\}$ (resp. $\{\varphi_2(kn+1) \mid n \in \mathbb{N}\}$), i.e. $g \in X_i^k$ if there exists a sequence

$$n_1 < \ldots < n_{\nu} < \ldots \quad (n_{\nu} \in I\!\!N),$$

for which

$$\varphi_i(kn_{\nu}+1) \to g$$
 as $\nu \to \infty$.

By using Theorem (9.16) of [9], it can be proved as in [8] that for each $k \in IN$ and $i \in \{1,2\}$ the set X_i^k is a compact subgroup in G_i and $\varphi_i(kn+1) \in X_i^k$ for all $n \in IN$.

For each $i \in \{1,2\}$ let $X_i := X_i^1$ and $X_i^* := X_i^A$. Let $g \in X_1$ and $\varphi_1(n_\nu) \to g$ as $\nu \to \infty$. Then, by using (1), it follows that the sequence $\{\varphi_2(An_\nu+1)\}_{\nu=1}^{\infty}$ is convergent. Let $\varphi_2(An_\nu+1) \to g'$, $(g' \in X_2^*)$. It is easily seen that g' is determined by g, and so the correspondence

$$H_1: g \rightarrow g' \quad (g \in X_1, g' \in X_2^*)$$

is a function. Similarly, if $h \in X_2$, $\varphi_2(m_\mu) \to h$ as $\mu \to \infty$, then the following limit exists:

$$\lim_{\mu\to\infty}\varphi_1(Am_\mu+1):=h'.$$

The correspondence

$$H_2: h \rightarrow h' \quad (h \in X_2, h' \in X_1^*)$$

is a function. The following assertion can be proved easily by using the same method as was used in [1].

Lemma 1. The functions $H_1: X_1 \to X_2^*$ and $H_2: X_2 \to X_1^*$ are continuous, furthermore

$$H_1(X_1) = X_2^*$$
 and $H_2(X_2) = X_1^*$.

For each $g \in X_1$ we denote by $X_2(g) \subseteq X_2$ the set of accumulation points of $\{\varphi_2(n_\nu)\}_{\nu=1}^{\infty}$, while $\varphi_1(n_\nu) \to g$ as $\nu \to \infty$, i.e. $h \in X_2(g)$ if there exists a sequence

$$n_{\nu_1} < \ldots < n_{\nu_j} < \ldots \quad (j \in I N)$$

for which

$$\varphi_2(n_{\nu_j}) \to h \quad \text{as} \quad j \to \infty.$$

Similarly, we define the set $X_1(h) \subseteq X_1$ for each $h \in X_2$ as the set of limit points of $\{\varphi_1(m_{\nu})\}_{\nu=1}^{\infty}$, if $\varphi_2(m_{\nu}) \to h$.

The following lemma is a key of our proof.

Lemma 2. We have

(2)
$$H_1(g + X_1(h) + \varphi_1(A)) + H_1(g) = H_1[g + H_2(h + H_1(g))]$$

and

(3)
$$H_2(h + X_2(g) + \varphi_2(A)) + H_2(h) = H_2[h + H_1(g + H_2(h))]$$

for all $g \in X_1$ and $h \in X_2$, where

$$H_1(g + X_1(h) + \varphi_1(A)) := \{H_1(g + g' + \varphi_1(A)) \mid g' \in X_1(h)\},\$$

$$H_2(h+X_1(g)+\varphi_2(A)):=\{H_2(h+h'+\varphi_2(A))\mid h'\in X_2(g)\}.$$

Proof. Let $g \in X_1$ and $h \in X_2$ be arbitrary elements. Let

$$n_1 < \ldots < n_{\nu} < \ldots$$
 and $m_1 < \ldots < m_{\nu} < \ldots$ $(n_{\nu}, m_{\nu} \in \mathbb{N})$

be such sequences for which $\varphi_1(n_{\nu}) \to g$ and $\varphi_2(m_{\nu}) \to h$ as $\nu \to \infty$.

By applying the following relations

$$(A^{2}n_{\nu}m_{\nu}+1)(An_{\nu}+1)=An_{\nu}[Am_{\nu}(An_{\nu}+1)+1]+1,$$

$$(A^{2}m_{\nu}n_{\nu}+1)(Am_{\nu}+1)=Am_{\nu}[A_{\nu}(Am_{\nu}+1)+1]+1$$

and using the definitions of H_1 , H_2 , $X_1(h)$ and $X_2(g)$ we get immediately that (2) and (3) hold. The proof of Lemma 2 is finished.

Lemma 3. There are $g_0 \in X_1$ and $h_0 \in X_2$ such that

$$H_1(g_0) = H_2(h_0) = 0$$
 and $g_0 \in X_1(h_0)$.

Proof. Let $S \subseteq X_1^*$ denote the set of all limit points of sequences $\{\varphi_1(An_{\nu}+1)\}_{\nu=1}^{\infty}$ while $\varphi_2(An_{\nu}+1) \to 0$ as $\nu \to \infty$. By using Theorem (9.16) of [9], it can be proved as in [8] that S is a closed semigroup in X_1^* , consequently S is a compact group. Therefore $0 \in S$, i.e. there is a sequence $\{N_{\nu}\}_{\nu=1}^{\infty}$ such that

$$\varphi_1(AN_{\nu'}+1) \to 0$$
, $\varphi_2(AN_{\nu}+1) \to 0$ as $\nu', \nu \to \infty$

for some subsequence $\{\nu'\}$ of $\{\nu\}$. Let $\{\nu'''\}\subseteq \{\nu''\}\subseteq \{\nu''\}$ be suitable rarefactions of $\{\nu'\}$ such that

$$\varphi_1(N_{\nu'''}) \rightarrow g_0 \in X_1, \qquad \varphi_2(N_{\nu''}) \rightarrow h_0 \in X_2.$$

Then $H_1(g_0) = H_2(h_0) = 0$ and $g_0 \in X_1(h_0)$. This completes the proof of Lemma 3.

Lemma 4. We have

(4)
$$H_1(-\varphi_1(A)) = H_2(-\varphi_2(A)) = 0.$$

Proof. Let $i \in \{1, 2\}$ be a fixed integer and let

$$E(\varphi_i) := \{ \varrho \in X_i \mid H_i(\varrho) = 0 \}.$$

Since X_i^* is a group, therefore $0 \in X_i^*$. Thus, it follows from Lemma 1 that there is at least one ϱ for which $H_i(\varrho) = 0$. Then $E(\varphi_i) \neq \emptyset$.

First we note from (3) that

(5)
$$H_1(\varrho_1 + X_1(\varrho_2) + \varphi_1(A)) = 0$$
 if $H_1(\varrho_1) = H_2(\varrho_2) = 0$.

Let $g_0 \in E(\varphi_1)$ and $h_0 \in E(\varphi_2)$ be the elements determined in Lemma 3. By using (5) and induction on k, one can deduce that

(6)
$$H_1(kg_0 + (k-1)\varphi_1(A)) = 0$$

holds for all $k \in \mathbb{N}$, which with the method used in the proof of Lemma 4 in [8] implies that (6) also holds for all integers k. In the case when k = 0 we have $H_1(-\varphi_1(A)) = 0$.

In the same way, we also obtain that $H_2(-\varphi_2(A)) = 0$. Lemma 4 is proved. Now we prove the Theorem.

We apply (3) with $g = -\varphi_1(A)$ and use Lemma 4, we have

$$H_1[X_1(h)] = H_1[H_2(h) - \varphi_1(A)]$$
 for all $h \in X_2$.

This with the definitions of H_1 and $X_1(h)$ shows that if $\varphi_2(m_{\nu}) \to h$, then

$$\varphi_2(Am_{\nu}+1) \rightarrow H_1[H_2(h)-\varphi_1(A)],$$

i.e.

$$\varphi_2 \in \mathcal{A}_{G_2}^*(D[A,1]).$$

Similarly, we have

$$\varphi_1 \in \mathcal{A}_{G_1}^*(D[A,1]).$$

From Theorem B, for each $i \in \{1,2\}$ there is $U_i \in \mathcal{A}_{G_i}^*$ and a continuous homomorphism $\Phi_i : R_* \to G_i$ which satisfy the parts (a), (b) and (c) of our theorem. It is easy to show that the correspondence $\Phi_1(n) \leftrightarrow \Phi_2(n)$ $(n \in \mathbb{N})$ generates a topological isomorphism Ψ between X_1^* and X_2^* and $\Psi\Phi_1 = \Phi_2$.

The converse assertion is true as well. The proof of the theorem is finished.

References

- [1] Daróczy Z. and Kátai I., On additive number-theoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288-292.
- [2] Daróczy Z. and Kátai I., On additive arithmetical functions with values in topological groups I., Publ. Math. Debrecen, 33 (1986), 287-291.
- [3] Daróczy and Kátai I., On additive arithmetical functions with values in topological groups II., Publ. Math. Debrecen, 34 (1984), 65-68.
- [4] Daróczy Z. and Kátai I., Characterization of additive functions with values in the circle group, *Publ. Math. Debrecen*, 36 (1989), 1-7.
- [5] Daróczy and Kátai I., A supplement to our paper "Characterization of additive functions with values in the circle group", Publ. Math. Debrecen (in print).
- [6] Daróczy Z. and Kátai I., Characterization of pairs of additive functions with some regularity property, *Publ. Math. Debrecen*, 37 (1990), 217-221.
- [7] Phong B.M., Characterization of additive functions with values in a compact Abelian group, *Publ. Math. Debrecen*, 40 (1992), 273-278.

- [8] Phong B.M., On additive functions with values in compact Abelian groups, Acta Sci. Math. Szeged, 56 (1992), 249-258.
- [9] Hewitt E. and Ross K.A., Abstract harmonic analysis, Springer, Berlin, 1963.

Bui Minh Phong

Department of Computer Algebra Eötvös Loránd University XI. Bogdánfy u. 10/B H-1117 Budapest, Hungary