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Abstract. We prove that for any nondegenerate Lehmer sequence,
the number of Lehmer pseudoprimes not exceeding z is greater than
exp{(log £)!/3%} if z is sufficiently large. We also show that for a given
positive integer d there is an absolute constant ¢ such that the number
of Lehmer pseudoprimes not exceeding £ which are of the form dt + 1 is
greater than exp{(log z)°} for all sufficiently large z.

1. Introduction and results

Let A and B be non-zero integers such that D = A2 — 4B # 0. A Lucas
sequence R = {R,}32, is defined by the initial terms Ry = 0, Ry = 1 and by
the recursion

R,=AR,_1— BR,_»

for all integers n > 1. We shall write R(A, B) for R when it is necessary to

show the dependence on A and B. It is well-known that

_Ot"—-,@"

1) R= 2=k

for any n > 0, where o and 3 are the distinct roots of the equation z? — Az +
+B = 0. In the following we say that R(A, B) is a non-degenerate sequence if
(A,B) =1 and a/f is not a root of unity.

For odd primes n with (n, BD) = 1, as it is well-known, we have

(2) Rn_(D/") =0 (mod n),
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where (D/n) is the Jacobi symbol. If n is composite, but (2) still holds, then
we say n is a Lucas pseudoprime with respect to the sequence R. It is a
generalization of a pseudoprime to base an integer b > 1, namely a composite
n is called a pseudoprime to base b if

*"1=1  (mod n).

In 1930 D.H.Lehmer [13] generalized some results of Lucas on the divisi-
bility properties of Lucas numbers to numbers U,, with n > 0 satisfying

{(a"—ﬂ“)/(a—ﬂ) for n odd
(a™ = B")/(a® — B?) for n even,

(3) Un =

where a, 3 are the distinct roots of the equation 22 — L2z + M =0 and L, M
are non-zero integers with the condition K = L—4M # 0. The numbers defined
above are known as Lehmer numbers. We also shall use the notation U(L, M)

for the sequence U = {Un}3%, when it is necessary to show the dependence on
L and M. We note that in the case L = A? and M = B by (1) and (3) we have

Un(A%,B) for n odd

(4) R.(A,B) =
AU, (A? B) for n even,

which is a connection between the Lucas and the Lehmer sequences. In the
case of Lehmer sequence we can assume, without any essential loss of generality,
that (L, M) = 1 (see [13]). It is not true for Lucas sequences. In the following
we also say that Lehmer sequence U(L, M) is a non-degenerate one if a/f is
not a root of unity.

A .Rotkiewicz [23] gave a proper generalization of pseudoprimes for Lehmer
sequences. A composite number n is called a Lehmer pseudoprime with respect
to the sequence U if (n, LMK) =1 and

Un—(Lk/n) =0 (mod n),

where (LK /n) is the Jacobi symbol and K = L — 4M. By (4) it is easily seen
that the Lehmer pseudoprime is a generalization of the Lucas pseudoprime
number.

Let P(b, z) denote the number of pseudoprimes to base b not exceeding z.
It is known that there exist positive constants ¢; and ¢s such that for all large
z

clogz < P(2,z) < z - exp (—cz(logzlog2 2)1/2) ,
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where the lower and the upper bound is due to D.H.Lehmer [14] and P.Erdés
[2], respectively. Here, the notation log, denotes the k-fold iteration of the
natural logarithm. C.Pomerance [19, 20] improved these results showing that
for all large «

exp ((log z)sll") <P z)<z: (L(:a:))—l/2
for any integer b > 2, where
L(z) := exp (log z logs z/ log, ) .

The exponent 5/14 has been improved to 85/207 in [21] by applying a recent
result due to J.B.Freidlander [4].

Let P(R,z) denote the number of pseudoprimes with respect to sequence
R not exceeding z. R.Baillie and S.S.Wagstaff,Jr. [1] proved that there exist
positive constants c3 and c4 such that for all large z

P(R,z) < z -exp (—ca(logz1052 z)l/z)
holds for any non-degenerate Lucas sequence R, and
cqlogz < P(R,z)

for sequences R for which D > 0 but D is not a perfect square. This lower
bound was extended by P.Kiss [12] to all non-degenerate sequences R. In a
recent paper [3] P.Erdds, P.Kiss and Sarkozy improved the lower bound for
P(R, z) extending Pomerance’s result for Lucas pseudoprimes. They proved
that there is a positive absolute constant cs such that for all large =

exp ((log z)°*) < P(R, z)

for any non-degenerate Lucas sequence R. In the proof of this result Erdds-
Kiss-Sarkozy showed only the existence of cs and they asked for the problem
of finding the numerical estimate for the constant cs.

Recently, D.M.Gordon and C.Pomerance [6] improved the upper bound
for Lucas pseudoprimes, namely they showed that

P(R,z) < z-(L(z))"*/%.

For some results concerning Lehmer pseudoprimes we refer to [11], [15],
(16], {17], (23] and [24]. For example, it follows from Theorem 4 of [16] that
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the number of those Lehmer pseudoprimes with respect to the sequence U not
exceeding x and which are products of exactly two distinct primes is > c¢ log =
for some positive absolute constant cs.

Our purpose in this paper is to give the numerical value for the constant
¢s and also to extend the results of Pomerance, Erdés-Kiss-Sarkozy for Lehmer
pseudoprimes. We shall prove the following

Theorem 1. Let U = U(L,M) be a non-degenerate Lehmer sequence
and let P(U,z) denote the number of Lehmer pseudoprimes with respect to the
sequence U not exceeding . Then for all large z

P(U,z) > exp ((log 1)1/35) .

Theorem 2. Let U = U(L, M) be a non-degenerate Lehmer sequence
and let d > 2 be a given integer for which (d,M) = 1. Let P(U,z,d) denote
the number of Lehmer pseudoprimes with respect to the sequence U of the form
dt + 1 not exceeding x. Then there is a positive absolule constant ¢ such that
for all large ¢ we have

P(U,z,d) > exp ((log z)°) .

We note that for the ordinary pseudoprimes A.Rotkiewicz [22] proved that
the number of pseudoprimes to base 2 of the form dt + 1 not exceeding z is

> logz/(2log2)d.

Remark. To prove our theorems we shall use some ideas due to Pomer-
ance [19,20] and Erd&s-Kiss-Sarkozy (3], furthermore some sieve results.

2. Preliminary results on Lehmer sequences

First we recall some results on Lehmer sequences and prove some lemmas
which will be used at the proofs of our theorems.
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Let U(L, M) be a non-degenerate Lehmer sequence defined by integers L
and M for which LM #0,(L,M) =1, K = L—4M # 0 and «/@ is not a root
of unity, where a and g are roots of 22 — L}/2z + M = 0. It is known that for
any non-zero integer n with (n, M) = 1 there are terms in U(L, M) divisible by
n. The least positive integer u, for which n|Uy is called the rank of apparation
of n in the sequence U(L, M) and we shall denote it by u(n). If a prime p is
a divisor of U, but (p, MLKU,...U,,_1) = 1 then p is called a primitive prime
divisor of U, . It is well-known that there is an absolute constant ng such that
Uy, has at least one primitive prime divisor for every n > ng (see A.Schinzel [25]
or C.L.Stewart {26]). The least positive integer %, for which n|Uz and Ug4y = 1
(mod n) is called the period of the sequence U(L, M) modulo n and we shall
denote it by u(n). It is known that for any non-zero integer n with (n, M) = 1
always exists u(n).

Let m and n be positive integers with (mn, M K) =1 and let p be a prime
for which (p,2LM K) = 1. Using the notations defined above, we have

(1) n|Un, if and only if u(n)jm,
(i1) u(p)l(p — (LK/p)),
(iii) u(p¥) = p**(Pu(p), where k(p) is defined by p¥®)||Uy (),
(iv) Up = (K/p) (mod p),
(v) u(nm) = [u(n), u(m)],
(vi) n|Up and Upyy =1 (mod n) if and only if a(n)|m,
(vii) w(nm) = [a(n), a(m)],
where [z,y] denotes the least common multiple of integers z,y and (K/p),

(LK /p) are the Jacobi symbols. For these properties of Lehmer sequences we
refer to D.H.Lehmer [13].

Lemma 1. Let Q and k be positive integers for which (2,k) = 1 and
u(Q)|k — 1. If a positive integer r satisfies the condition (Q,U;) = 1, then

Ukr
U,

=1 (mod Q).

Proof. By using (3) it is easily seen that for positive integers ¢ and s, we
have

(5) Ust41 = Uporye41Usgr — MU, 1)Uy if 2t

and

U,U,H.l - MU,..lU" lf 2!8
(6) Usit41) =

U,U,H.] —LMU,_lU,t lf (2,5):1.
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By using (¢), (5) and the induction on s, we have
Unyr1 = U2y, (mod UY) if 20,
which with (6) implies
7 Ust41) = UsUser = U, Uy, (mod Uy) if 2t

Let @ and k be positive integers for which (2,k) = 1, u(Q)|k — 1. Then,
by (vi), we have

(8) Ue=1 (mod Q).
Applying (7) with ¢t = k — 1 and s = r with (Q,U,) = 1, we get by (8) that
U =U UL =0, (mod Q),

which proves Lemma 1.

Lemma 2. Let p be a prime for which (L/p) = (K/p) = 1, where
K =L —4M. If a positive integer r satisfies the condition (p,U;) = 1, then

Upr

Tp(r) == 7

=1 (mod p)

and
(LK/Ty() = 1.
Proof. Applying (7) with t = p— 1 and r = s, we have
Upr =UU;  (mod Up_y),

which using (ii), (iv) and the facts (p, U;) = 1, (L/p) = (K/p) = 1, shows that
(9) T,)=E2U; = (K/pY =1 (mod )

Let ¢ > 2 be a prime divisor of T,(r). Since

@), 0) = (F2.0.) 15
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(see Stewart [27]), it follows from (p, U,) = 1 and (9) that (¢,U,;) = 1. On the
other hand, by (i) and using the fact ¢|Tp(r), we have u(q)|pr. Let u(q) = pr'
for some positive integer r’, '|r. This with (i) and (it} implies that

(10) ¢=(LK/g) (mod p) and T,(r) = (LK/T,(r)) (mod p).
Thus, by (9) and (10) the proof of Lemma 2 is finished.

In the following let

®, = Qn(a,ﬂ) = H(ai —_ ﬂ')“('?),

ijn

where ®,(z,y) is the n-th cyclotomic polynomial, u is the Mobius function
and a, A3 are the distinct roots of z2 — L/22 + M = 0. Let P(n) denote the
greatest prime divisor of the positive integer n and ng be the absolute constant
of Schinzel {25] and Stewart [26] mentioned above.

We shall prove Theorem 1 and Theorem 2 from the following theorem.

Theorem 3. Let U = U(L, M) be a non-degenerate Lehmer sequence and
let @ > 1 be an integer. If

p=4LKu(Q)z +1
is a prime number satisfying p > max (P(Q),|LM K|ng) and if
S={reN: rlQ and (pQU;)=1},
then the number

n= H<I>p,-

res’

is a Lehmer pseudoprime with respect 1o the sequence U for any subset S’ of S
with cardinality at least 2. Furthermore, for these numbers n, we have

n=1 (mod pQ).

Proof. We first prove that forallr € S

(11) $py =1  (mod pQ), (LK/®p)=1
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and

Upr

(12 T,(r) =

=1 (mod pQ), (LK/T,(r))=1.

Since p = 4LKu(Q)z +1 is a prime, by (i), (ii), (iv) and (vi) we have u(Q)|p—1
and (L/p) = (K/p) = 1. Thus, (12) follows from Lemmas 1-2 and the facts
(r,Q)=1and (pQ,U,)=1forany r € S.

Now we prove (11).

Let r € S and let d; = 1,...,d, be all square-free divisors of r. Since
p > P(Q) > P(r) it follows that

d1=11"')d81 pdlzp»"'apds

are all square-free divisors of pr. It is well-known that for every positive integer
v2>1

o, = H(U%)u(d),

dlv
and so by (12) we get

@ o =TT ()" =TT [(02)™ (0) ] -

dlpr i=1

s (ds) s #(di)
=H[U5§/U{'__]” = [T,, (dl)] =1 (mod pQ).
=1 i=1 ¢

In the last step we have used the fact r/d; € S for all d;jr and for all r € S.

On the other hand, by using the fact u(g) = n if ¢ is a prime divisor of ®,,
and ¢ # P(n) (see [27]), it follows that for any r € S and a prime divisor ¢ of
®,, we have u(q) = pr, because (p,U,) = | and p = P(pr). Thus

¢=(LK/q)  (mod p),
and
(14) O, = (LK/®p,) (mod p).

By (13) and (14) one can deduce that (LK/®,,) = 1, which proves (11).
Let S’ C S with the cardinality of S’ at least 2. Then the number of the

form
n= H b,
res’
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is composite and we get from (11) that

(LK/n)=1 and pQn—-1= (H QP,) -1.

res’

On the other hand, it follows from (v)

u(n) = u (H q>,,,)| Q.

res’

These imply u(n)|n — (LK/n), i.e. nis a Lehmer pseudoprime with respect to
the sequence U, furthermore n = 1 (mod pQ). This completes the proof of
Theorem 3.

3. Distribution of primes satisfying suitable condition

In this section P denotes the set of primes and for each set X we shall
denote by }X| the cardinality of it.
For positive real numbers z > y let

T(z,y):={peP: y<p<z and Pllp-1)(p+1)]<y}.
Let m(z) denote the number of primes not exceeding z. We shall prove the

following

Lemma 3. For each real number u with 32 < u < 1 there ezists zo(u)
such that
T(z,z%) > 7(z)

Jor all £ > zo(u).
Proof. Let u be a real number for which %% < u < 1. We have

T(z,z%) =

Hp<z: Plle-Dp+D]<z*H-I{p<z*: Pllp—D(p+1)] <z} 2>
2m(z)—n(z¥)—{p<z:Plp-1)>z*} - [{p<z: P(p+1) > "} =
=m(z) — m(z¥) - Mi(z,u) — Ma(z,u),

where
Mj(z,u)={p<z: P(p+j)>=z*} (G=-1j=1)
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By using Corollary 5.8.4 of Halberstam and Richert [8], one can deduce that

M(z,u) =

= |{P <z: Ppp-1)= p-1 > z" for some even integer a} <
a

. p-1 }I ( 1 )
< <z: 2 ep}<16[(1- — ) x
- 2<a§l-- {p B ¢ - pl;Iz (p—1)?
1 T [ ( 10g2 3z )]
x 1+0 =
2<¢<E,_.1_. (Pla,p>2 p—2alog’(z/a) log(z/a)

=16Cz(1+o(z)) Y Ma)

2 ]
2<ﬂ<$l_' alog (z/a)

where

C= H( 1)2) and Ma)= ][] :i)%;-.

p>2 pla,p>2

In the following let A(1) = 1, A(2*) = 1 for all @ > 1 and we define the
function h(n) by the relation

hm) = 3 (3) M),

din

It is obvious that A(n) is a multiplicative function and the Mobius inversion
formula shows that

An) = h(n),
d|n
consequently
AMp®) = h(p®) + A(p*7Y) if a1,
Ap®)=Ap) if a21,
h(p*)=0 if a>1
and

p—1 1 .
P =Mp)-1="—5~1=—— if p>2
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Thus, we have

)= Yxm = o3 = S [§] <v- 3 >

n<y n<y din
y,,l;Iz (1 * h;p)) : y,,l;[z (1 * p(lvl 2)) /e

By using the Abel’s summation formula and the above result, we deduce that

(15) S(z) =

_ Ma) 1 L) | 1\
- 1;.0 alog?(Z ) " log(z) * zlog*(z/z) i/L(t) (tlogz(z/t)) dt

1 L(z) . | Y
T logiz + zlog¥(z/z) + 1/ Lo (—tlog’(z/t)> <

- + e +C"]t(--———l—-)’dt<
log’(z)  log®(z/z) 4 tlog?(z/t) -

1 c-! 1 1
<- —+c-1(—_—).
- log2 T + loszz log(z/z) logz

Applying this result with z = z!~%, then for large z we have

(16) Mi(z,u) < 16Cz(1+o(1)){o(l)+C-11:u} 1o;z =
= (161_7" + 0(1)) (z).

It can be deduced in the same way that
l1-u
(17) My(z,u) < (IGT + o(l)) x(z).

From (16), (17) and using the fact 1 > u > 32, there is a constant zo(u) such
that for all z > zo(u) we have
) n(z) =

T(z,z") > n(z) — m(z") -2 (
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_ (1 _ 321_%_’1 + o(l)) r(z) > (),

because 1 > u > g—g and the prime number theorem implies that

w(z") o
n(z) (1)-

Remark. If I(z,y) = |[{p < z: P(p—1) < y}|, then by using some
results of Hooley [10] and Goldfeld [5], Pomerance {18] showed that for all
u > 625/512¢ and for all large z

I (z,z%) > =(z).

Recently, Freidlander [4] improved this result by showing that the last relation
holds for u > 1/(2/e).

4. The proof of Theorem 1

Lemma 4. Let
E =sup{c:T (z,2)7%) > n(z)}.
Then for any small € > 0 there is zo(c,U) such that
(18) P(U,z) > exp {(log z)Eﬁ_‘—‘} _

holds for all z > zo(e,U).

Proof. We note from Lemma 3 that £ > L

35, and so we may assume that
E>e>0.

Let y be a large real number. We denote by A the least common multiple
of all positive integers not exceeding logy/log, y and let py be the least prime
number of the form 4LK At + 1. Let

z := (log y)(l_E“/?')_1 ,

logy : logy}
V= EP:——=—<p<z and Pfp-Dp+1)]<—=>,
{p gy <PS [(p-1D(p+1) < oz, ¥

log,
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A={peV:[p-1Lp+1]| A and (p,u(po)) =1},
Q=]]r
pEA
and
Si={r<y: r|Q and (poQ,U,)=1}.
We note that

logy _ L1 —[E—¢€/2+ (log, 217 E+¢/2) log 2]
logz y ’

which using the definition of E shows that
Vi=T (Ey_) > 62
log, y log 2

for some positive absolute constant 6.
We shall prove that |S] > yf—*.

If pe V and [p—1,p+ 1] is not a divisor of A, then there is a prime power
q° > logy/log, y with ¢ > 2 such that ¢°|p— 1 or ¢°|p + 1. By using the fact
p < z, the number of such prime powers is

(20) <2Z 2z <z logy y 1/2—0 z
q° logy T T \logz /)’

It is obvious that if p € V and p|u(po), then plpo — (LK /po). On the other
hand, by using the prime number theorem, we have

oo (o (22) o (22)

log, y log, y
where ¥(z) denotes the Chebyshev’s function (see e.g. [9], Theorem 420,
Theorem 434), and so

po < (ALK A)*® < exp(40log y/ log, y)
if y is enough large (see [7]). Thus

(21) HpeV, plu(po)}l <
< v(po — (LK/po)) < log(po — (LK/po))/logz <
< log(po + 1)/ log z < 2log po <

_ logylogz\ =z (z
< 80logy/log,y = (80—-———-zlog2y logz—o logz)
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By using (19), (20) and (21), we have

z

5
(22) JAI2VI-{peV.[p-1,p+1] JAH - |{p € V : plu(po)}| > 2Tonz
for all large y.

It can be seen that for all divisors r of Q@ we have (po,U,) = 1and (Q,U;) =
= 1. Thus

(23) S={r<y:riQ}.

Since all prime divisors of Q is < z, one can deduce that r € S if r has at most
[logy/ log z] prime divisors. Then, it follows from a result of Pomerance [19]
that

151> 4",

(see the proof of Theorem 1 of {19]).

We now prove (18).
Since

logy
Ao (152).

therefore

1
po>A>exp(2lZijy)>zzP(Q) and pg > no|LMK|.

Then, it follows from Theorem 3 that

(24) n= ] ®por

res’

is Lehmer pseudoprime with respect to the sequence U if $' C S and |S’'| > 2.
Since there is a constant ¢ = ¢(U), such that &, < e*, it follows that if n is of
the form in (24) then

n=exp{ 3 ogltpal <o {em Tr} <

res’ re€s’

< exp {CPO Z r} < exp {Cy4°/ log, yy.yE—e} <

res

E+1)

<exp(y =z,
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if
(E+1)™!

y = (log z) and z is enough large.

On the other hand |S| > yF~¢, we can assume that |S| = [y¥~¢], and so the
number of those n of the form in (24) is

>251 5| -1> @ -1y Boe > exp{(log:c)ﬁ‘x“}
for all large z. Thus
P(U,z) > exp {(logz)'ﬁ'l“‘} ,
which proves (18). Lemma 4 is proved.

The proof of Theorem 1 follows directly from Lemma 3 and Lemma 4,
because

5. The proof of Theorem 2

Let U = U(L, M) be a non-degenerate Lehmer sequence and let d > 2 be
a given integer for which (d, M) = 1. Then, it is obvious that u(d) exists, i.e.

Uﬁ(d) =0 and Ug(d).,.l =1 (mod d).

In the following c7, cs, . . . denote positive absolute constants.

Let 0 < § < 1/33 be a fixed real number. Then, it follows from Lemma 3
that for all large y

T(y,y" %) > “logy’

Thus, if p1 < p2 < ... < p: denote the those primes p which satisfy the
conditions

(25) ' ?<p<y and Plp-1(p+1)] <y,

then t > c7y/logy. For these primes p we have

Plu(p)] < Pl(pi = D(pi + D] < ¥,
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and so

(26) (u(pi),p1-..pt)=1 (i=1,...,1).

Let

(27) m:=[p—Lpt+1,...,pe—Lpe+1]=0q"...q5",

where ¢ < ... < ¢, are primes and ¢;,...,€e, are positive integers. By (25)
and (27)

¢ <y+1 and ¢ <y'? (@G=1,..,1).

Then, by using the prime number theorem, we have

s ] s
logm =log [J a5’ <log[J(v+1) < ) logy® <
i=1 i=1

i=1
1-6

y l-c

<21 > 1<3logy—r— .

< 05y<” <308y(1_6)10gy<y ,
qsy -~

i.e. m < exp(y'~°).

Let now
Q:=p1...p

and let py be the smallest prime of the form 4L Ku(d)mz + 1. Then
po < (ALKT(d)m)*® < exp (y*~°).
Furthermore, let
S:={r:r|Q, r <exp(y'~*) and (poQ',U,)=1}.

It is easy to show by using (26) and the definition of Q' that (Q’,U,) = 1 for
all r|Q’, consequently

S:={r:rlQ, r <exp(y'~*) and (po,U;)=1}.
Let Q := Q' - d, where d is a given positive integer. One can deduce that

#(Q)2u(d)m.
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Thus, it follows from Theorem 3 that for any subset S’ C S with |S’| > 2 the
numbers of the form

(28) n= H QPM’

res'
are Lehmer pseudoprimes and
n=1 (mod d).
Since |Ui| < e*°¥, for the numbers n defined in (28) we have

n= H Ppor < H |Upor| < exp (Cxopo Z 7') <

res’ res’ res’
l=cg l—cg l—-cg
< exp (cme” e ) < exp (e‘"’ ) ==z

if
1—69

logz := etV

Thus, the number of Lehmer pseudoprimes < z and = 1 (mod d) is

(29) > 2% 5| - 1.

By using the same method that was used in [3], one can prove that
251 — S| - 1> exp((log z)°),

which with (29) proves Theorem 2. The proof of Theorem 2 is complete.
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