ON THE DISTRIBUTION OF LUCAS AND LEHMER PSEUDOPRIMES

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on the occasion of his fiftieth birthday

Abstract. We prove that for any nondegenerate Lehmer sequence, the number of Lehmer pseudoprimes not exceeding x is greater than $\exp\{(\log x)^{1/35}\}$ if x is sufficiently large. We also show that for a given positive integer d there is an absolute constant c such that the number of Lehmer pseudoprimes not exceeding x which are of the form dt+1 is greater than $\exp\{(\log x)^c\}$ for all sufficiently large x.

1. Introduction and results

Let A and B be non-zero integers such that $D = A^2 - 4B \neq 0$. A Lucas sequence $R = \{R_n\}_{n=0}^{\infty}$ is defined by the initial terms $R_0 = 0, R_1 = 1$ and by the recursion

$$R_n = AR_{n-1} - BR_{n-2}$$

for all integers n > 1. We shall write R(A, B) for R when it is necessary to show the dependence on A and B. It is well-known that

$$R_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

for any $n \ge 0$, where α and β are the distinct roots of the equation $x^2 - Ax + B = 0$. In the following we say that R(A, B) is a non-degenerate sequence if (A, B) = 1 and α/β is not a root of unity.

For odd primes n with (n, BD) = 1, as it is well-known, we have

(2)
$$R_{n-(D/n)} \equiv 0 \pmod{n},$$

where (D/n) is the Jacobi symbol. If n is composite, but (2) still holds, then we say n is a Lucas pseudoprime with respect to the sequence R. It is a generalization of a pseudoprime to base an integer b > 1, namely a composite n is called a pseudoprime to base b if

$$b^{n-1} \equiv 1 \pmod{n}.$$

In 1930 D.H.Lehmer [13] generalized some results of Lucas on the divisibility properties of Lucas numbers to numbers U_n with $n \ge 0$ satisfying

(3)
$$U_n = \begin{cases} (\alpha^n - \beta^n)/(\alpha - \beta) & \text{for } n \text{ odd} \\ (\alpha^n - \beta^n)/(\alpha^2 - \beta^2) & \text{for } n \text{ even,} \end{cases}$$

where α , β are the distinct roots of the equation $z^2 - L^{1/2}z + M = 0$ and L, M are non-zero integers with the condition $K = L - 4M \neq 0$. The numbers defined above are known as Lehmer numbers. We also shall use the notation U(L, M) for the sequence $U = \{U_n\}_{n=0}^{\infty}$ when it is necessary to show the dependence on L and M. We note that in the case $L = A^2$ and M = B by (1) and (3) we have

(4)
$$R_n(A,B) = \begin{cases} U_n(A^2,B) & \text{for } n \text{ odd} \\ AU_n(A^2,B) & \text{for } n \text{ even,} \end{cases}$$

which is a connection between the Lucas and the Lehmer sequences. In the case of Lehmer sequence we can assume, without any essential loss of generality, that (L,M)=1 (see [13]). It is not true for Lucas sequences. In the following we also say that Lehmer sequence U(L,M) is a non-degenerate one if α/β is not a root of unity.

A.Rotkiewicz [23] gave a proper generalization of pseudoprimes for Lehmer sequences. A composite number n is called a Lehmer pseudoprime with respect to the sequence U if (n, LMK) = 1 and

$$U_{n-(LK/n)} \equiv 0 \pmod{n},$$

where (LK/n) is the Jacobi symbol and K = L - 4M. By (4) it is easily seen that the Lehmer pseudoprime is a generalization of the Lucas pseudoprime number.

Let P(b, x) denote the number of pseudoprimes to base b not exceeding x. It is known that there exist positive constants c_1 and c_2 such that for all large x

$$c_1 \log x < P(2, x) < x \cdot \exp\left(-c_2(\log x \log_2 x)^{1/2}\right)$$

where the lower and the upper bound is due to D.H.Lehmer [14] and P.Erdős [2], respectively. Here, the notation \log_k denotes the k-fold iteration of the natural logarithm. C.Pomerance [19, 20] improved these results showing that for all large x

$$\exp\left((\log x)^{5/14}\right) \leq P(b,x) \leq x \cdot (L(x))^{-1/2}$$

for any integer $b \geq 2$, where

$$L(x) := \exp(\log x \log_3 x / \log_2 x).$$

The exponent 5/14 has been improved to 85/207 in [21] by applying a recent result due to J.B.Freidlander [4].

Let P(R, x) denote the number of pseudoprimes with respect to sequence R not exceeding x. R.Baillie and S.S.Wagstaff,Jr. [1] proved that there exist positive constants c_3 and c_4 such that for all large x

$$P(R,x) < x \cdot \exp\left(-c_3(\log x \log_2 x)^{1/2}\right)$$

holds for any non-degenerate Lucas sequence R, and

$$c_4 \log x < P(R, x)$$

for sequences R for which D > 0 but D is not a perfect square. This lower bound was extended by P.Kiss [12] to all non-degenerate sequences R. In a recent paper [3] P.Erdős, P.Kiss and Sárközy improved the lower bound for P(R,x) extending Pomerance's result for Lucas pseudoprimes. They proved that there is a positive absolute constant c_5 such that for all large x

$$\exp\left((\log x)^{c_5}\right) < P(R, x)$$

for any non-degenerate Lucas sequence R. In the proof of this result Erdős-Kiss-Sárközy showed only the existence of c_5 and they asked for the problem of finding the numerical estimate for the constant c_5 .

Recently, D.M.Gordon and C.Pomerance [6] improved the upper bound for Lucas pseudoprimes, namely they showed that

$$P(R,x) < x \cdot (L(x))^{-1/2}.$$

For some results concerning Lehmer pseudoprimes we refer to [11], [15], [16], [17], [23] and [24]. For example, it follows from Theorem 4 of [16] that

the number of those Lehmer pseudoprimes with respect to the sequence U not exceeding x and which are products of exactly two distinct primes is $\geq c_6 \log x$ for some positive absolute constant c_6 .

Our purpose in this paper is to give the numerical value for the constant c_5 and also to extend the results of Pomerance, Erdős-Kiss-Sárközy for Lehmer pseudoprimes. We shall prove the following

Theorem 1. Let U = U(L, M) be a non-degenerate Lehmer sequence and let P(U, x) denote the number of Lehmer pseudoprimes with respect to the sequence U not exceeding x. Then for all large x

$$P(U,x) \ge \exp\left((\log x)^{1/35}\right).$$

Theorem 2. Let U = U(L, M) be a non-degenerate Lehmer sequence and let $d \geq 2$ be a given integer for which (d, M) = 1. Let P(U, x, d) denote the number of Lehmer pseudoprimes with respect to the sequence U of the form dt + 1 not exceeding x. Then there is a positive absolute constant c such that for all large x we have

$$P(U, x, d) \ge \exp((\log x)^c)$$
.

We note that for the ordinary pseudoprimes A.Rotkiewicz [22] proved that the number of pseudoprimes to base 2 of the form dt + 1 not exceeding x is

$$\geq \log x/(2\log 2)d.$$

Remark. To prove our theorems we shall use some ideas due to Pomerance [19,20] and Erdős-Kiss-Sárközy [3], furthermore some sieve results.

2. Preliminary results on Lehmer sequences

First we recall some results on Lehmer sequences and prove some lemmas which will be used at the proofs of our theorems.

Let U(L,M) be a non-degenerate Lehmer sequence defined by integers L and M for which $LM \neq 0$, (L,M) = 1, $K = L - 4M \neq 0$ and α/β is not a root of unity, where α and β are roots of $z^2 - L^{1/2}z + M = 0$. It is known that for any non-zero integer n with (n,M) = 1 there are terms in U(L,M) divisible by n. The least positive integer u, for which $n|U_u$ is called the rank of apparation of n in the sequence U(L,M) and we shall denote it by u(n). If a prime p is a divisor of U_n but $(p,MLKU_1...U_{n-1}) = 1$ then p is called a primitive prime divisor of U_n . It is well-known that there is an absolute constant n_0 such that U_n has at least one primitive prime divisor for every $n > n_0$ (see A.Schinzel [25] or C.L.Stewart [26]). The least positive integer \overline{u} , for which $n|U_{\overline{u}}$ and $U_{\overline{u}+1} \equiv 1 \pmod{n}$ is called the period of the sequence U(L,M) modulo n and we shall denote it by $\overline{u}(n)$. It is known that for any non-zero integer n with (n,M) = 1 always exists $\overline{u}(n)$.

Let m and n be positive integers with (mn, MK) = 1 and let p be a prime for which (p, 2LMK) = 1. Using the notations defined above, we have

- (i) $n|U_m$ if and only if u(n)|m,
- (ii) u(p)|(p-(LK/p)),
- (iii) $u(p^k) = p^{k-k(p)}u(p)$, where k(p) is defined by $p^{k(p)}||U_{u(p)}|$
- (iv) $U_p \equiv (K/p) \pmod{p}$,
- (v) u(nm) = [u(n), u(m)],
- (vi) $n|U_m$ and $U_{m+1} \equiv 1 \pmod{n}$ if and only if $\overline{u}(n)|m$,
- $(\mathrm{vii}) \ \overline{u}(nm) = [\overline{u}(n), \overline{u}(m)],$

where [x, y] denotes the least common multiple of integers x, y and (K/p), (LK/p) are the Jacobi symbols. For these properties of Lehmer sequences we refer to D.H.Lehmer [13].

Lemma 1. Let Q and k be positive integers for which (2,k)=1 and $\overline{u}(Q)|k-1$. If a positive integer r satisfies the condition $(Q,U_r)=1$, then

$$\frac{U_{kr}}{U_r} \equiv 1 \pmod{Q}.$$

Proof. By using (3) it is easily seen that for positive integers t and s, we have

(5)
$$U_{st+1} = U_{(s-1)t+1}U_{t+1} - LMU_{(s-1)t}U_t \quad \text{if} \qquad 2|t$$

and

(6)
$$U_{s(t+1)} = \begin{cases} U_s U_{st+1} - M U_{s-1} U_{st} & \text{if} \quad 2|s \\ U_s U_{st+1} - L M U_{s-1} U_{st} & \text{if} \quad (2, s) = 1. \end{cases}$$

By using (i), (5) and the induction on s, we have

$$U_{st+1} \equiv U_{t+1}^s \pmod{U_t^2} \quad \text{if} \quad 2|t,$$

which with (6) implies

(7)
$$U_{s(t+1)} \equiv U_s U_{st+1} \equiv U_s U_{t+1}^s \pmod{U_t} \quad \text{if} \quad 2|t.$$

Let Q and k be positive integers for which (2, k) = 1, $\overline{u}(Q)|k-1$. Then, by (vi), we have

$$(8) U_k \equiv 1 \pmod{Q}.$$

Applying (7) with t = k - 1 and s = r with $(Q, U_r) = 1$, we get by (8) that

$$U_{rk} \equiv U_r U_k^r \equiv U_r \pmod{Q},$$

which proves Lemma 1.

Lemma 2. Let p be a prime for which (L/p) = (K/p) = 1, where K = L - 4M. If a positive integer r satisfies the condition $(p, U_r) = 1$, then

$$T_p(r) := \frac{U_{pr}}{U_r} \equiv 1 \pmod{p}$$

and

$$(LK/T_p(r))=1.$$

Proof. Applying (7) with t = p - 1 and r = s, we have

$$U_{pr} \equiv U_r U_p^r \pmod{U_{p-1}},$$

which using (ii), (iv) and the facts $(p, U_r) = 1$, (L/p) = (K/p) = 1, shows that

(9)
$$T_p(r) = \frac{U_{pr}}{U_p} \equiv U_p^r \equiv (K/p)^r \equiv 1 \pmod{p}.$$

Let q > 2 be a prime divisor of $T_p(r)$. Since

$$(T_p(r), U_r) = \left(\frac{U_{pr}}{U_r}, U_r\right) \mid p$$

(see Stewart [27]), it follows from $(p, U_r) = 1$ and (9) that $(q, U_r) = 1$. On the other hand, by (i) and using the fact $q|T_p(r)$, we have u(q)|pr. Let u(q) = pr' for some positive integer r', r'|r. This with (i) and (ii) implies that

(10)
$$q \equiv (LK/q) \pmod{p}$$
 and $T_p(r) \equiv (LK/T_p(r)) \pmod{p}$.

Thus, by (9) and (10) the proof of Lemma 2 is finished.

In the following let

$$\Phi_n = \Phi_n(\alpha, \beta) = \prod_{i|n} (\alpha^i - \beta^i)^{\mu(\frac{n}{i})},$$

where $\Phi_n(x,y)$ is the *n*-th cyclotomic polynomial, μ is the Möbius function and α , β are the distinct roots of $z^2 - L^{1/2}z + M = 0$. Let P(n) denote the greatest prime divisor of the positive integer n and n_0 be the absolute constant of Schinzel [25] and Stewart [26] mentioned above.

We shall prove Theorem 1 and Theorem 2 from the following theorem.

Theorem 3. Let U = U(L, M) be a non-degenerate Lehmer sequence and let Q > 1 be an integer. If

$$p = 4LK\overline{u}(Q)x + 1$$

is a prime number satisfying $p > \max(P(Q), |LMK|n_0)$ and if

$$S = \{r \in I\!\!N: \ r|Q \ \ and \ \ (pQ, U_r) = 1\},$$

then the number

$$n=\prod_{r\in S'}\Phi_{pr}$$

is a Lehmer pseudoprime with respect to the sequence U for any subset S' of S with cardinality at least 2. Furthermore, for these numbers n, we have

$$n \equiv 1 \pmod{pQ}$$
.

Proof. We first prove that for all $r \in S$

(11)
$$\Phi_{pr} \equiv 1 \pmod{pQ}, \quad (LK/\Phi_{pr}) = 1$$

and

(12)
$$T_p(r) = \frac{U_{pr}}{U_r} \equiv 1 \pmod{pQ}, \quad (LK/T_p(r)) = 1.$$

Since $p = 4LK\overline{u}(Q)x + 1$ is a prime, by (i), (ii), (iv) and (vi) we have $\overline{u}(Q)|p-1$ and (L/p) = (K/p) = 1. Thus, (12) follows from Lemmas 1-2 and the facts (p,Q) = 1 and $(pQ,U_r) = 1$ for any $r \in S$.

Now we prove (11).

Let $r \in S$ and let $d_1 = 1, ..., d_s$ be all square-free divisors of r. Since $p > P(Q) \ge P(r)$ it follows that

$$d_1 = 1, \ldots, d_s, \ pd_1 = p, \ldots, pd_s$$

are all square-free divisors of pr. It is well-known that for every positive integer $v \geq 1$

$$\Phi_{v} = \prod_{d|v} (U_{\frac{v}{d}})^{\mu(d)},$$

and so by (12) we get

$$(13) \quad \Phi_{pr} = \prod_{d|pr} \left(U_{\frac{pr}{d}} \right)^{\mu(d)} = \prod_{i=1}^{s} \left[\left(U_{\frac{pr}{d_i}} \right)^{\mu(d_i)} \left(U_{\frac{pr}{pd_i}} \right)^{\mu(pd_i)} \right] =$$

$$= \prod_{i=1}^{s} \left[U_{\frac{pr}{d_i}} / U_{\frac{r}{d_i}} \right]^{\mu(d_i)} = \prod_{i=1}^{s} \left[T_p \left(\frac{r}{d_i} \right) \right]^{\mu(d_i)} \equiv 1 \pmod{pQ}.$$

In the last step we have used the fact $r/d_i \in S$ for all $d_i|r$ and for all $r \in S$.

On the other hand, by using the fact u(q) = n if q is a prime divisor of Φ_n and $q \neq P(n)$ (see [27]), it follows that for any $r \in S$ and a prime divisor q of Φ_{pr} we have u(q) = pr, because $(p, U_r) = 1$ and p = P(pr). Thus

$$q \equiv (LK/q) \pmod{p}$$
,

and

(14)
$$\Phi_{pr} \equiv (LK/\Phi_{pr}) \pmod{p}.$$

By (13) and (14) one can deduce that $(LK/\Phi_{pr}) = 1$, which proves (11).

Let $S' \subset S$ with the cardinality of S' at least 2. Then the number of the form

$$n = \prod_{r \in S'} \Phi_{pr}$$

is composite and we get from (11) that

$$(LK/n) = 1$$
 and $pQ|n-1 = \left(\prod_{r \in S'} \Phi_{pr}\right) - 1$.

On the other hand, it follows from (v)

$$u(n) = u\left(\prod_{r \in S'} \Phi_{pr}\right) | pQ.$$

These imply u(n)|n-(LK/n), i.e. n is a Lehmer pseudoprime with respect to the sequence U, furthermore $n \equiv 1 \pmod{pQ}$. This completes the proof of Theorem 3.

3. Distribution of primes satisfying suitable condition

In this section \mathcal{P} denotes the set of primes and for each set X we shall denote by |X| the cardinality of it.

For positive real numbers x > y let

$$T(x,y) := |\{p \in \mathcal{P} : y$$

Let $\pi(x)$ denote the number of primes not exceeding x. We shall prove the following

Lemma 3. For each real number u with $\frac{32}{33} < u < 1$ there exists $x_0(u)$ such that

$$\mathcal{T}(x, x^u) \gg \pi(x)$$

for all $x > x_0(u)$.

Proof. Let u be a real number for which $\frac{32}{33} < u < 1$. We have

$$T(x, x^u) =$$

$$= |\{p \le x : P[(p-1)(p+1)] \le x^u\}| - |\{p \le x^u : P[(p-1)(p+1)] \le x^u\}| \ge$$

$$\ge \pi(x) - \pi(x^u) - |\{p \le x : P(p-1) > x^u\}| - |\{p \le x : P(p+1) > x^u\}| =$$

$$= \pi(x) - \pi(x^u) - M_1(x, u) - M_2(x, u),$$

where

$$M_j(x, u) = |\{p < x : P(p+j) > x^u\}| \quad (j = -1, j = 1).$$

By using Corollary 5.8.4 of Halberstam and Richert [8], one can deduce that

$$M_1(x, u) =$$

$$= \left| \left\{ p \le x : \quad P(p-1) = \frac{p-1}{a} > x^u \quad \text{for some even integer} \quad a \right\} \right| \le$$

$$\le \sum_{2 \le a < x^{1-u}} \left| \left\{ p \le x : \quad \frac{p-1}{a} \in \mathcal{P} \right\} \right| \le 16 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2} \right) \times$$

$$\times \sum_{2 \le a < x^{1-u}} \left(\prod_{p|a,p>2} \frac{p-1}{p-2} \frac{x}{a \log^2(x/a)} \left[1 + O\left(\frac{\log_2 3x}{\log(x/a)}\right) \right] \right) =$$

$$= 16Cx \left(1 + o(x) \right) \sum_{2 \le a < x^{1-u}} \frac{\lambda(a)}{a \log^2(x/a)},$$

where

$$C = \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right)$$
 and $\lambda(a) = \prod_{p|a,p>2} \frac{p-1}{p-2}$.

In the following let $\lambda(1)=1$, $\lambda(2^{\alpha})=1$ for all $\alpha\geq 1$ and we define the function h(n) by the relation

$$h(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d).$$

It is obvious that $\lambda(n)$ is a multiplicative function and the Möbius inversion formula shows that

$$\lambda(n) = \sum_{d|n} h(n),$$

consequently

$$\lambda(p^{\alpha}) = h(p^{\alpha}) + \lambda(p^{\alpha-1})$$
 if $\alpha \ge 1$,
 $\lambda(p^{\alpha}) = \lambda(p)$ if $\alpha \ge 1$,
 $h(p^{\alpha}) = 0$ if $\alpha > 1$

and

$$h(p) = \lambda(p) - 1 = \frac{p-1}{p-2} - 1 = \frac{1}{p-2}$$
 if $p > 2$.

Thus, we have

$$L(y) := \sum_{n \le y} \lambda(n) = \sum_{n \le y} \sum_{d \mid n} h(d) = \sum_{d \le y} h(d) \left[\frac{y}{d} \right] \le y \cdot \sum_{d \le y} \frac{h(d)}{d} \le$$
$$\le y \prod_{p > 2} \left(1 + \frac{h(p)}{p} \right) \le y \prod_{p > 2} \left(1 + \frac{1}{p(p-2)} \right) = y/C.$$

By using the Abel's summation formula and the above result, we deduce that

(15)
$$S(z) := \frac{\sum_{1 < a \le z} \frac{\lambda(a)}{a \log^{2}(\frac{z}{a})}}{z \log^{2}(\frac{z}{a})} = -\frac{1}{\log^{2}(x)} + \frac{L(z)}{z \log^{2}(x/z)} - \int_{1}^{z} L(t) \left(\frac{1}{t \log^{2}(x/t)}\right)' dt = \frac{1}{\log^{2} x} + \frac{L(z)}{z \log^{2}(x/z)} + \int_{1}^{z} L(t) \left(-\frac{1}{t \log^{2}(x/t)}\right)' dt \le \frac{1}{\log^{2}(x)} + \frac{C^{-1}}{\log^{2}(x/z)} + C^{-1} \int_{1}^{z} t \left(-\frac{1}{t \log^{2}(x/t)}\right)' dt \le \frac{1}{\log^{2} x} + \frac{C^{-1}}{\log^{2} x} + C^{-1} \left(\frac{1}{\log(x/z)} - \frac{1}{\log x}\right).$$

Applying this result with $z = x^{1-u}$, then for large x we have

(16)
$$M_1(x,u) \le 16Cx (1+o(1)) \left\{ o(1) + C^{-1} \frac{1-u}{u} \right\} \frac{1}{\log x} = \left(16 \frac{1-u}{u} + o(1) \right) \pi(x).$$

It can be deduced in the same way that

(17)
$$M_2(x, u) \leq \left(16\frac{1-u}{u} + o(1)\right)\pi(x).$$

From (16), (17) and using the fact $1 > u > \frac{32}{33}$, there is a constant $x_0(u)$ such that for all $x > x_0(u)$ we have

$$T(x,x^u) \ge \pi(x) - \pi(x^u) - 2\left(16\frac{1-u}{u} + o(1)\right)\pi(x) =$$

$$= \left(1 - 32\frac{1 - u}{u} + o(1)\right)\pi(x) \gg \pi(x),$$

because $1 > u > \frac{32}{33}$ and the prime number theorem implies that

$$\frac{\pi(x^u)}{\pi(x)} = o(1).$$

Remark. If $\Pi(x,y) = |\{p \le x : P(p-1) \le y\}|$, then by using some results of Hooley [10] and Goldfeld [5], Pomerance [18] showed that for all u > 625/512e and for all large x

$$\Pi(x,x^u)\gg \pi(x)$$
.

Recently, Freidlander [4] improved this result by showing that the last relation holds for $u > 1/(2\sqrt{e})$.

4. The proof of Theorem 1

Lemma 4. Let

$$E = \sup \left\{ c : \mathcal{T}\left(x, x^{1-c}\right) \gg \pi(x) \right\}.$$

Then for any small $\varepsilon > 0$ there is $x_0(\varepsilon, U)$ such that

(18)
$$P(U,x) > \exp\left\{ (\log x)^{\frac{E}{E+1} - \epsilon} \right\}$$

holds for all $x > x_0(\varepsilon, U)$.

Proof. We note from Lemma 3 that $E > \frac{1}{33}$, and so we may assume that $E > \varepsilon > 0$.

Let y be a large real number. We denote by A the least common multiple of all positive integers not exceeding $\log y/\log_2 y$ and let p_0 be the least prime number of the form 4LKAt+1. Let

$$z := (\log y)^{(1-E+\epsilon/2)^{-1}},$$

$$V := \left\{ p \in \mathcal{P} : \frac{\log y}{\log_2 y}$$

$$\mathcal{A}:=\left\{p\in V:\left[p-1,p+1
ight]\mid A\quad ext{and}\quad \left(p,u(p_0)
ight)=1
ight\},$$

$$Q:=\prod_{p\in\mathcal{A}}p$$

and

$$S := \{ r \leq y : r | Q \text{ and } (p_0 Q, U_r) = 1 \}.$$

We note that

$$\frac{\log y}{\log_2 y} = z^{1 - \left[E - \varepsilon/2 + (\log_2 z^{1 - E + \varepsilon/2})/\log z\right]},$$

which using the definition of E shows that

$$|V| = \mathcal{T}\left(z, \frac{\log y}{\log_2 y}\right) > \delta \frac{z}{\log z}$$

for some positive absolute constant δ .

We shall prove that $|S| > y^{E-\epsilon}$.

If $p \in V$ and [p-1, p+1] is not a divisor of A, then there is a prime power $q^c > \log y / \log_2 y$ with $c \ge 2$ such that $q^c | p-1$ or $q^c | p+1$. By using the fact $p \le z$, the number of such prime powers is

(20)
$$< 2 \sum \left[\frac{2z}{q^c} \right] \ll z \left(\frac{\log_2 y}{\log y} \right)^{1/2} = o \left(\frac{z}{\log z} \right).$$

It is obvious that if $p \in V$ and $p|u(p_0)$, then $p|p_0 - (LK/p_0)$. On the other hand, by using the prime number theorem, we have

$$A = \exp\left(\Psi\left(\frac{\log y}{\log_2 y}\right)\right) \sim \exp\left(\frac{\log y}{\log_2 y}\right),\,$$

where $\Psi(x)$ denotes the Chebyshev's function (see e.g. [9], Theorem 420, Theorem 434), and so

$$p_0 < (4LKA)^{20} < \exp(40\log y/\log_2 y)$$

if y is enough large (see [7]). Thus

(21)
$$|\{p \in V, \quad p|u(p_0)\}| \le$$

$$\le \nu (p_0 - (LK/p_0)) \le \log (p_0 - (LK/p_0)) / \log z \le$$

$$\le \log(p_0 + 1) / \log z \le 2 \log p_0 <$$

$$< 80 \log y / \log_2 y = \left(80 \frac{\log y \log z}{z \log_2 y}\right) \frac{z}{\log z} = o\left(\frac{z}{\log z}\right).$$

By using (19), (20) and (21), we have

$$(22) \quad |\mathcal{A}| \geq |V| - |\{p \in V, [p-1, p+1] \ |A\}| - |\{p \in V : p|u(p_0)\}| > \frac{\delta}{2} \frac{z}{\log z}$$

for all large y.

It can be seen that for all divisors r of Q we have $(p_0, U_r) = 1$ and $(Q, U_r) = 1$. Thus

$$(23) S = \{r \le y : r|Q\}.$$

Since all prime divisors of Q is $\leq z$, one can deduce that $r \in S$ if r has at most $[\log y/\log z]$ prime divisors. Then, it follows from a result of Pomerance [19] that

$$|S| \geq y^{E-\epsilon}$$
.

(see the proof of Theorem 1 of [19]).

We now prove (18).

Since

$$A \sim \exp\left(\frac{\log y}{\log_2 y}\right),\,$$

therefore

$$p_0 > A > \exp\left(\frac{\log y}{2\log_2 y}\right) > z \ge P(Q)$$
 and $p_0 > n_0|LMK|$.

Then, it follows from Theorem 3 that

$$(24) n = \prod_{r \in S'} \Phi_{p_0 r}$$

is Lehmer pseudoprime with respect to the sequence U if $S' \subseteq S$ and $|S'| \ge 2$. Since there is a constant c = c(U) such that $\Phi_n < e^{cn}$, it follows that if n is of the form in (24) then

$$\begin{split} n &= \exp\left\{\sum_{r \in S'} \log |\Phi_{p_0 r}|\right\} \leq \exp\left\{cp_0 \sum_{r \in s'} r\right\} \leq \\ &\leq \exp\left\{cp_0 \sum_{r \in S} r\right\} < \exp\left\{cy^{40/\log_2 y} y. y^{E-\varepsilon}\right\} \leq \\ &\leq \exp\left(y^{E+1}\right) = x, \end{split}$$

if

$$y = (\log x)^{(E+1)^{-1}}$$
 and x is enough large.

On the other hand $|S| \ge y^{E-\epsilon}$, we can assume that $|S| = [y^{E-\epsilon}]$, and so the number of those n of the form in (24) is

$$\geq 2^{|S|} - |S| - 1 > 2^{y^{E-\epsilon}-1} - y^{E-\epsilon} - 1 \geq \exp\left\{(\log x)^{\frac{E}{E+1}-\epsilon}\right\}$$

for all large x. Thus

$$P(U,x) \ge \exp\left\{(\log x)^{\frac{E}{E+1}-\varepsilon}\right\}$$

which proves (18). Lemma 4 is proved.

The proof of Theorem 1 follows directly from Lemma 3 and Lemma 4, because

$$\frac{E}{E+1} - \varepsilon = \frac{1}{34} - \varepsilon > \frac{1}{35}.$$

5. The proof of Theorem 2

Let U = U(L, M) be a non-degenerate Lehmer sequence and let $d \ge 2$ be a given integer for which (d, M) = 1. Then, it is obvious that $\overline{u}(d)$ exists, i.e.

$$U_{\overline{u}(d)} \equiv 0$$
 and $U_{\overline{u}(d)+1} \equiv 1 \pmod{d}$.

In the following c_7, c_8, \ldots denote positive absolute constants.

Let $0 < \delta < 1/33$ be a fixed real number. Then, it follows from Lemma 3 that for all large y

$$T(y, y^{1-\delta}) > c_7 \frac{y}{\log y}.$$

Thus, if $p_1 < p_2 < \ldots < p_t$ denote the those primes p which satisfy the conditions

(25)
$$y^{1-\delta}$$

then $t > c_7 y / \log y$. For these primes p we have

$$P[u(p_i)] < P[(p_i - 1)(p_i + 1)] < y^{1-\delta},$$

and so

(26)
$$(u(p_i), p_1 \dots p_t) = 1 (i = 1, \dots, t).$$

Let

$$(27) m := [p_1 - 1, p_1 + 1, \dots, p_t - 1, p_t + 1] = q_1^{e_1} \dots q_s^{e_s},$$

where $q_1 < \ldots < q_s$ are primes and e_1, \ldots, e_s are positive integers. By (25) and (27)

$$q_i^{e_i} \leq y+1$$
 and $q_i \leq y^{1-\delta}$ $(i=1,\ldots,t)$.

Then, by using the prime number theorem, we have

$$\begin{split} \log m &= \log \prod_{i=1}^{s} q_{i}^{e_{i}} \leq \log \prod_{i=1}^{s} (y+1) < \sum_{i=1}^{s} \log y^{2} \leq \\ &\leq 2 \log y \sum_{g \leq y^{1-\delta}} 1 < 3 \log y \frac{y^{1-\delta}}{(1-\delta) \log y} < y^{1-c_{\delta}}, \end{split}$$

i.e. $m < \exp(y^{1-c_8})$.

Let now

$$Q' := p_1 \dots p_t$$

and let p_0 be the smallest prime of the form $4LK\overline{u}(d)mx + 1$. Then

$$p_0 < (4LK\overline{u}(d)m)^{20} < \exp\left(y^{1-c_9}\right).$$

Furthermore, let

$$S := \{r : r | Q', r < \exp(y^{1-c_9}) \text{ and } (p_0 Q', U_r) = 1\}.$$

It is easy to show by using (26) and the definition of Q' that $(Q', U_r) = 1$ for all r|Q', consequently

$$S := \{r : r | Q', r < \exp(y^{1-c_9}) \text{ and } (p_0, U_r) = 1\}.$$

Let $Q := Q' \cdot d$, where d is a given positive integer. One can deduce that

$$\overline{u}(Q)|2\overline{u}(d)m$$
.

Thus, it follows from Theorem 3 that for any subset $S' \subseteq S$ with $|S'| \ge 2$ the numbers of the form

$$(28) n = \prod_{r \in S'} \Phi_{p_0 r}$$

are Lehmer pseudoprimes and

$$n \equiv 1 \pmod{d}$$
.

Since $|U_k| < e^{c_{10}k}$, for the numbers n defined in (28) we have

$$n = \prod_{r \in S'} \Phi_{p_0 r} \le \prod_{r \in S'} |U_{p_0 r}| < \exp\left(c_{10} p_0 \sum_{r \in S'} r\right) < \exp\left(c_{10} e^{y^{1-c_9}} e^{2y^{1-c_9}}\right) < \exp\left(e^{4y^{1-c_9}}\right) = x$$

if

$$\log x := e^{4y^{1-c_9}}.$$

Thus, the number of Lehmer pseudoprimes $\leq x$ and $\equiv 1 \pmod{d}$ is

$$(29) \geq 2^{|S|} - |S| - 1.$$

By using the same method that was used in [3], one can prove that

$$2^{|S|} - |S| - 1 > \exp\left((\log x)^{c_{11}}\right),\,$$

which with (29) proves Theorem 2. The proof of Theorem 2 is complete.

References

- [1] Baillie R. and Wagstaff S.S. Jr., Lucas pseudoprimes, *Math. Comp.*, 35 (1980), 1391-1417.
- [2] Erdős P., On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, 4 (1956), 201-206.
- [3] Erdős P., Kiss P. and Sárközy A., A lower bound for the counting function of Lucas pseudoprimes, Math. Comp., 41 (1988), 315-323.

- [4] Freidlander J.B., Shifted primes without large prime factors, Number Theory and Applications, ed. R.A.Mollin, Kluwer, 1989, 393-402.
- [5] Goldfeld M., On the number of primes p for which p + a has a large prime factor, Mathematika, 16 (1969), 23-27.
- [6] Gordon D.M. and Pomerance C., The distribution of Lucas and elliptic pseudoprimes, *Math. Comp.*, 196 (1991), 825-838.
- [7] Graham S., On Linnik's constant, Acta Arith., 39 (1981), 161-179.
- [8] Halberstam H. and Richert H.E., Sieve methods, Academic Press, 1974.
- [9] Hardy G.H. and Wright E.M., An introduction to the theory of numbers, Oxford Univ. Press, London, 1954.
- [10] Hooley C., On the greatest prime factor of p+a, Mathematika, 20 (1973), 135-143.
- [11] Joó I. and Phong B.M., On super Lehmer pseudoprimes, Studia Sci. Math. Hungar., 25 (1990), 121-124.
- [12] Kiss P., Some results on Lucas pseudoprimes, Ann. Univ. Sci. Bud. Sect. Math., 28 (1986), 153-159.
- [13] **Lehmer D.H.,** An extended theory of Lucas' functions, *Ann. Math.*, 31 (1930), 419-448.
- [14] Lehmer D.H., On converse of Fermat's theorem, Amer. Math. Monthly, 43 (1936), 347-354.
- [15] Phong B.M., On super Lucas and super Lehmer pseudoprimes, Studia Sci. Math. Hungar., 23 (1988), 435-442.
- [16] Phong B.M., Lucas- és Lehmer- pszeudoprím számokról (On Lucas and Lehmer pseudoprime numbers), Matematikai Lapok, 33 (1986), 79-92.
- [17] Phong B.M., Rotkiewicz egy problémájának általánosított megoldása (Generalized solution of Rotkiewicz's problem), Matematikai Lapok, 34 (1987), 109-119.
- [18] Pomerance C., Popular values of Euler's function, Mathematika, 27 (1980), 84-89.
- [19] Pomerance C., On the distribution of pseudoprimes, Math. Comp., 37 (1981), 587-593.
- [20] Pomerance C., A new lower bound for the pseudoprime counting function, *Illinois J. Math.*, 26 (1982), 4-9.
- [21] Pomerance C., Two methods in elementary analytic number theory, Number Theory and Applications, ed. R.A.Mollin, Kluwer, 1989, 135-161.
- [22] Rotkiewicz A., On some problems of W.Sierpinski, Acta Arith., 21 (1972), 251-259.

- [23] Rotkiewicz A., On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 20 (1972), 349-354.
- [24] Rotkiewicz A., On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp., 39 (1982), 239-247.
- [25] Schinzel A., Primitive divisors of the expression $A^n B^n$ in algebraic number fields, J. reine angew. Math., 268/269 (1974), 27-33.
- [26] Stewart C.L., Primitive divisors of Lucas and Lehmer numbers, Transcendence theory, ed. A.Baker and D.W.Masser, Acad. Press, London-New York, 1977, 79-92.
- [27] Stewart C.L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc., 35 (1977), 425-447.

Bui Minh Phong Department of Computer Algebra Eötvös Loránd University XI. Bogdánfy u. 10/B

H-1117 Budapest, Hungary