ON THE REGULARITY OF ADDITIVE ARITHMETICAL FUNCTIONS WITH VALUES IN A LOCALLY COMPACT GROUP

J.-L. Mauclaire (Paris, France)

Dedicated to Professor Karl-Heinz Indlekofer on the occasion of his fiftieth birthday

1. Introduction

Notation

N (resp. \mathbb{N}^*) is the set of ordinary integers (resp. positive integers, and P (resp. p) is the set of the prime integers (resp. a generic element of P).

For any p in P $v_p(n)$ is the exponent of p in n.

Position of the problem

Definition. Let G be a group, and denote by * the group operation. A function f is a G-valued additive arithmetical function if f is a $\mathbb{N}^* \to G$ function such that f(mn) = f(m) * f(n) when (m, n) = 1.

Throughout this article we shall assume that G is a topological group. Then it is a classical problem to give a characterization of the G-valued additive arithmetical functions satisfying the following condition (C):

(C)
$$\lim_{n\to+\infty} \left(f(n+1) * \overline{f(n)} \right) = e,$$

where e is the neutral element of G and $\overline{f(n)}$ is the inverse of f(n).

This problem has been considered at first by P.Erdős in [2] in 1946 in the case $G = \mathbb{R}$, he proved that any real valued additive arithmetical function f satisfies the condition (C) if and only if there exists a constant c such that

J.-L. Mauclaire

 $f(n) = c \cdot \log n$ for any n in \mathbb{N}^* . If $G = \mathbb{R}/\mathbb{Z}$ the solution has been provided by E.Wirsing [6] in 1984; in this case we have $f(n) = c \cdot \log n$ modulo 1. Extending results of Z.Daróczy and I.Kátai [1] who solved this problem for metrical compactly generated locally compact abelian group, I proved in [3] that if G is an abelian locally compact group, an additive function f satisfies the condition (C) if and only if there exists a continuous homomorphism $\varphi : \mathbb{R} \to G$ such that $f(n) = \varphi(\log n)$ for any n in \mathbb{N}^* . This cannot be extended to all groups. I.Z.Ruzsa and R.Tijdeman proved in [4] that there exists a topology on the group of integers (with no continuous characters) and an integer-valued function f satisfying the condition (C), and I.Z.Ruzsa [5] has an example in which f is a real-valued function and the group of the reals has a topology such that the continuous characters separate the elements of this group. In this paper a characterization of arithmetical additive function f with values in a general locally compact group satisfying the condition (C) is given.

2. The result

The result presented in this paper is the following

Theorem. Let G be a locally compact group. An additive arithmetical function with values in G satisfies the condition (C) if and only if there exists a continuous homomorphism $\varphi : \mathbb{R} \to G$ such that for any n in \mathbb{N}^* , $f(n) = \varphi(\log n)$.

3. Proof of the theorem

I. It is clear that if there exists a continuous homomorphism $\varphi : \mathbb{R} \to G$ such that for any n in \mathbb{N}^* , $f(n) = \varphi(\log n)$, by continuity, the additive function f(n) will satisfy the condition (C) since we have

$$\lim_{n \to +\infty} f(n+1) * \overline{f(n)} = \lim_{n \to +\infty} \varphi(\log(n+1)) * \overline{\varphi(\log n)} =$$

$$= \lim_{n \to +\infty} \varphi(\log(n+1)) * \varphi(-\log n) = \lim_{n \to +\infty} \varphi(\log(n+1) - \log n) =$$

$$= \lim_{n \to +\infty} \varphi\left(\log\left(\frac{n+1}{n}\right)\right) = \varphi(\log(1)) = \varphi(0) = e.$$

- II. We assume now that f satisfies the condition (C).
- II-1. We shall prove the following

Proposition. Let G be a topological group and f a G-valued additive arithmetical function satisfying the condition (C). Then f is a completely additive function, i.e. for any m,n in \mathbb{N}^* we have

$$f(mn) = f(m) * f(n).$$

Proof of the proposition.

a) We have the following

Lemma 1. For any m,n in \mathbb{N}^* such that (m,n)=1 we have

$$f(m) * f(n) = f(n) * f(m).$$

Proof. Since $f(m \cdot n) = f(n \cdot m)$ and (m, n) = 1, we have $f(m) * f(n) = f(m \cdot n) = f(n \cdot m) = f(n) * f(m)$.

b) We say that f satisfies the hypothesis (H) if

given any
$$k$$
 in \mathbb{N} , $f(2^k) = (f(2))^k$.

From the Lemma 1 we shall deduce

Lemma 2. If f satisfies the hypothesis (H) then for any p in P and any k,ℓ in \mathbb{N} we have

$$f(2)^k * f(p)^{\ell} = f(p)^{\ell} * f(2)^k$$
.

Proof. We remark that the hypothesis (H) gives

$$f(2)^k * f(p)^{\ell} = f(2^k) * f(p)^{\ell}$$
.

Now we prove the result by induction. Since Lemma 1 gives the result if $\ell = 1$, assume that Lemma 2 is true for some $\ell \ge 1$. We have the equalities

$$f(2)^{k} * f(p)^{\ell+1} = f(2^{k}) * f(p)^{\ell+1} = f(2^{k}) * (f(p) * f(p)^{\ell}) =$$

$$= (f(2^{k}) * f(p)) * f(p)^{\ell} = (f(p) * f(2^{k})) * f(p)^{\ell} =$$

$$= f(p) * (f(2^{k}) * f(p)^{\ell}) = f(p) * (f(p)^{\ell} * f(2^{k})) =$$

$$= (f(p) * f(p)^{\ell}) * f(2^{k}) = f(p)^{\ell+1} * f(2^{k}) =$$

$$= f(p)^{\ell+1} * f(2)^{k}.$$

c) Now we prove

Lemma 3. If f satisfies the hypothesis (H), then for any p in P and any k in N we have

$$(f(2p))^k = f(2)^k * f(p)^k = f(p)^k * f(2)^k.$$

Proof. Lemma 2 gives that

$$f(2)^k * f(p)^k = f(p)^k * f(2)^k$$
.

Now, due to the hypothesis (H), the case p=2 is immediate. Moreover, if p>2 we remark that if k=0, the result is trivial, and if k=1, Lemma 1 gives that

$$f(2p) = f(2) * f(p) = f(p) * f(2)$$

and so Lemma 3 is true for k = 0 or 1.

We prove the result by induction. Assume that Lemma 3 is true for some $k \ge 1$. We have the equalities

$$(f(2p))^{k+1} = (f(2p) * f(2p)) * (f(2p)^{k-1}).$$

Now, since (2, p)=1, we have

$$f(2p) = f(2) * f(p) = f(p) * f(2),$$

and using (H), Lemma 2 and the induction hypothesis, this gives that

$$(f(2p))^{k+1} = ((f(2) * f(p)) * (f(2p))) * (f(2p)^{k-1}) =$$

$$= ((f(p) * f(2)) * (f(2p))) * (f(2p)^{k-1}) =$$

$$= ((f(p) * f(2)) * (f(2) * f(p))) * (f(2p)^{k-1}) =$$

$$= [f(p) * (f(2) * f(2)) * f(p)] * (f(2p)^{k-1}) =$$

$$= [f(p) * (f(2)^2) * f(p)] * (f(2p)^{k-1}) =$$

$$= [f(p) * (f(p) * f(2)^2)] * (f(2p)^{k-1}) =$$

$$= [f(p)^2 * f(2)^2] * [f(p)^{k-1} * f(2)^{k-1}] =$$

$$= [f(2)^2 * f(p)^2] * [f(p)^{k-1} * f(2)^{k-1}] =$$

$$= [f(2)^2] * [f(p)^{k+1} * f(2)^{k-1}] =$$

$$= [f(2)^2] * [f(2)^{k-1} * f(p)^{k+1}] = \text{ (by Lemma 2)}$$

$$= f(2)^{k+1} * f(p)^{k+1}.$$

d) We prove that f is a completely additive function, i.e. for any m, n in \mathbb{N}^* we have

$$f(mn) = f(m) * f(n).$$

Proof. By Lemma 1 it is sufficient to prove that if p is any prime and k any element of \mathbb{N} , then we have

$$f(p^k) = f(p)^k.$$

e) We introduce some notations. a is an even integer, and if k is a positive integer we put

$$S_k(a) = a^{k-1} + a^{k-2} + \ldots + a + 1 = \frac{a^{k-1}}{a-1}.$$

Then, if n tends to infinity, we have by hypothesis

$$f(a^k n + S_k(a)) * \overline{f(a^k n + S_k(a) - 1)} \rightarrow e$$

and since

$$a^{k}n + S_{k}(a) - 1 = a^{k}n + \frac{a^{k} - 1}{a - 1} - 1 = a^{k}n + a^{k-1} + a^{k-2} + \ldots + a =$$

$$= a \cdot (a^{k-1}n + S_{k-1}(a))$$

and

$$(a, a^{k-1}n + S_{k-1}(a)) = 1,$$

we get that

$$f(a^{k}n + S_{k}(a) - 1) = f(a) * f(a^{k-1}n + S_{k-1}(a)),$$

and this implies that, if n tends to infinity,

$$f(a^k n + S_k(a)) * \overline{f(a)} * \overline{f(a^{k-1}n + S_{k-1}(a))} \rightarrow e.$$

Now if k is a given positive integer, $k \geq 2$, and n tends to infinity, then for any ℓ satisfying $2 \leq \ell \leq k$ we have

$$f(a^{\ell}n + S_{\ell}(a)) * \overline{f(a)} * \overline{f(a^{\ell-1}n + S_{\ell-1}(a))} \rightarrow e$$

and as a consequence we get that

$$\left(f\left(a^{k}n+S_{k}(a)\right)*\overline{f(a)}*\overline{f\left(a^{k-1}n+S_{k-1}(a)\right)}\right)*$$

$$\left(f\left(a^{k-1}n + S_{k-1}(a)\right) * \overline{f(a)} * \overline{f\left(a^{k-2}n + S_{k-2}(a)\right)}\right) *$$

$$* \dots * \overline{f\left(a^{2}n + S_{2}(a)\right)} *$$

$$* \left(f\left(a^{2}n + S_{2}(a)\right) * \overline{f(a)} * \overline{f\left(an + S_{1}(a)\right)}\right) \to e.$$

By cancellation we obtain that

$$\left(f\left(a^k n + S_k(a)\right) * \overline{f(a)}^{k-1} * \overline{f(an + S_1(a))}\right) \to e,$$

and since we have $S_1(a) = 1$, we get that

(i)
$$\left(f\left(a^k n + S_k(a)\right) * \overline{f(a)}^{k-1} * \overline{f(an+1)} \right) \to e.$$

Now we set

$$n = S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1).$$

We then have

$$f(a^{k}n + S_{k}(a)) = f(a^{k}(S_{k}(a) \cdot (a \cdot S_{k}(a) \cdot m + 1)) + S_{k}(a)) =$$

$$= f(S_{k}(a) \cdot [a^{k}(a \cdot S_{k}(a) \cdot m + 1)] + S_{k}(a)) =$$

$$= f(S_{k}(a) \cdot [a^{k}(a \cdot S_{k}(a) \cdot m + 1) + 1]).$$

Now we remark that

$$[a^{k} (a \cdot S_{k}(a) \cdot m + 1) + 1] = a^{k+1} \cdot S_{k}(a) \cdot m + (a^{k} + 1) =$$

$$= a^{k+1} \cdot S_{k}(a) \cdot m + [(a^{k} - 1) + 2] =$$

$$= a^{k+1} \cdot S_{k}(a) \cdot m + [(a - 1) \cdot S_{k}(a) + 2] =$$

$$= S_{k}(a) \cdot (a^{k+1} \cdot m + (a - 1)) + 2,$$

and so, since a is even, $S_k(a)$ is odd and we deduce that

$$(S_k(a), [a^k(a \cdot S_k(a) \cdot m + 1) + 1]) = 1,$$

which implies by Lemma 1 that

(ii)
$$f\left(a^{k}\left(S_{k}(a)\cdot\left(a\cdot S_{k}(a)\cdot m+1\right)\right)+S_{k}(a)\right)=$$
$$=f(S_{k}(a))*f\left(a^{k}\left(a\cdot S_{k}(a)\cdot m+1\right)+1\right).$$

But, if m tends to infinity, we have

$$f(a^k(a\cdot S_k(a)\cdot m+1)+1)*\overline{f(a^k(a\cdot S_k(a)\cdot m+1))}\to e$$

and so, since

$$(a^k, a \cdot S_k(a) \cdot m + 1) = 1,$$

we obtain that

(iii)
$$f\left(a^{k}(a\cdot S_{k}(a)\cdot m+1)+1\right)*\overline{f(a^{k})}*\overline{f(a\cdot S_{k}(a)\cdot m+1)}\to e.$$

Now in our case where

$$n = S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1),$$

we have also

$$an + 1 = a \cdot [S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1)] + 1,$$

and so

$$f(an + 1) = f(a \cdot [S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1)] + 1),$$

$$f(an) = f(a \cdot [S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1)]) =$$

$$(iv) = f(a) * f(S_k(a)) * f(a \cdot S_k(a) \cdot m + 1),$$

since
$$(a, S_k(a)) = (S_k(a), a \cdot S_k(a) \cdot m + 1) = (a, a \cdot S_k(a) \cdot m + 1) = 1$$
.

Moreover, since

$$f(an+1)*\overline{f(an)}\to e$$

when n tends to infinity, if we replace n by the special sequence defined by

$$n = S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1),$$

by (iv), we obtain that when m tends to infinity (v)

$$f(a \cdot [S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1)] + 1) * \overline{f(a)} * \overline{f(S_k(a))} * \overline{f(a \cdot S_k(a) \cdot m + 1)} \rightarrow e.$$

This gives that, since

$$\left(f(a^k n + S_k(a)) * \overline{f(a)}^{k-1} * \overline{f(an+1)}\right) \to e$$
 by (i),

if

$$n = S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1),$$

by substituting in (i), we have

$$\left(f(a^{k}(S_{k}(a)\cdot(a\cdot S_{k}(a)\cdot m+1))+S_{k}(a))*\overline{f(a)}^{k-1}*\right)$$

$$*\overline{f(a(S_{k}(a)\cdot(a\cdot S_{k}(a)\cdot m+1))+1)})\rightarrow e \quad \text{by } (i),$$

which can be written as

$$f(S_k(a)) * f(a^k(a \cdot S_k(a) \cdot m + 1) + 1) * \overline{f(a)}^{k-1} *$$

$$* \overline{f(a \cdot [S_k(a) \cdot (a \cdot S_k(a) \cdot m + 1)] + 1)} \rightarrow e,$$

and (iii) and (v) give us

$$f(S_k(a)) * [f(a^k) * f(a \cdot S_k(a) \cdot m + 1)] * \overline{f(a)}^{k-1} *$$

$$* [\overline{f(a)} * \overline{f(S_k(a))} * \overline{f(a \cdot S_k(a) \cdot m + 1)}] \rightarrow e,$$

which can be written as

(vi)
$$f(S_k(a)) * [f(a^k) * f(a \cdot S_k(a) \cdot m + 1)] * \overline{f(a)}^k *$$

$$\overline{f(S_k(a))} * \overline{f(a \cdot S_k(a) \cdot m + 1)} \to e.$$

To conclude we shall use the following

Lemma 4. If (m,n)=1 then for any k in N we have

$$f(m) * f(n)^k = f(n)^k f(m).$$

Proof. If k = 1 this is Lemma 1. Assume that for a given positive integer k we have

$$f(m) * f(n)^k = f(n)^k * f(m).$$

Then for k+1 we can write

$$f(m) * f(n)^{k+1} = f(m) * [f(n)^k * f(n)] =$$

$$= [f(m) * f(n)^k] * f(n) =$$

$$= [f(n)^k * f(m)] * f(n) =$$
 (by our induction hypothesis)
$$= f(n)^k * [f(m) * f(n)] =$$

$$= f(n)^k * [f(n) * f(m)] =$$
 (by Lemma 1)
$$= f(n)^{k+1} * f(m),$$

and Lemma 4 is proved. We now remark that since

$$(a, S_k(a)) = (S_k(a), a \cdot S_k(a) \cdot m + 1) = (a, a \cdot S_k(a) \cdot m + 1) = 1$$

the relation

$$f(S_k(a)) * [f(a^k) * f(a \cdot S_k(a) \cdot m + 1)] * \overline{f(a)}^k *$$

$$* \overline{f(S_k(a))} * \overline{f(a \cdot S_k(a) \cdot m + 1)} \rightarrow e$$

can be written as

$$[f(a^k) * f(a \cdot S_k(a) \cdot m + 1) * f(S_k(a))] *$$

$$* [\overline{f(S_k(a))} * \overline{f(a \cdot S_k(a) \cdot m + 1)} * \overline{f(a)}^k] \to e$$

using Lemma 1 and Lemma 4, which can be reduced by cancellation to the short expression

$$f(a^k) * \overline{f(a)}^k \to e$$

which means that

$$f(a^k) = f(a)^k.$$

So we have obtained

Lemma 5. If a is even and k is any positive integer we have

$$f(a^k) = f(a)^k.$$

Now, if a = 2, we get evidently

$$f(2^k) = f(2)^k.$$

And if a = 2p, where p is any odd prime, we obtain that

$$f\left((2p)^k\right) = (f(2p))^k.$$

But f satisfies the hypothesis (H) since

any given
$$k$$
 in \mathbb{N} , $f(2^k) = (f(2))^k$.

So, by Lemma 3 and Lemma 5, remarking that

$$f\left(2^{k}\cdot p^{k}\right) = f(2^{k}) * f(p^{k}),$$

we get

$$f(2^k) * f(p^k) = f((2p)^k) = (f(2p))^k = f(2)^k * f(p)^k = f(2^k) * f(p)^k.$$

This gives that

$$f(2^k) * f(p^k) = f(2^k) * f(p)^k,$$

and so we obtain that

$$f\left(p^{k}\right)=f(p)^{k}.$$

This ends the proof of the complete additivity of f.

II-2. We finish the proof of the theorem.

Consider F, the closure in G of the group generated by the values of f on P, the set of primes. This group is abelian by construction, since f is completely additive, and since G is locally compact. The complete additivity of f implies that as a F-valued additive function, f satisfies the condition (C), and by [3], since F is an abelian locally compact group, there exists a continuous homomorphism $\varphi: \mathbb{R} \to F$ such that $f(n) = \varphi(\log n)$ for any n in \mathbb{N}^* [3]. A fortiori, this homomorphism is a continuous homomorphism $\varphi: \mathbb{R} \to G$ such that $f(n) = \varphi(\log n)$ for any n in \mathbb{N}^* , and this ends the proof of the theorem.

References

- [1] Daróczy Z. and Kátai I., On additive arithmetical functions with values in topological groups I., Publ. Math., 33 (1986), 287-291.
- [2] Erdős P., On the distribution function of additive functions, Annals of Math., 47 (1946), 1-20.
- [3] Mauclaire J.-L., On the regularity of group-valued additive arithmetical functions, submitted to *Publ. Math. Debrecen* (see also: Distribution des valeurs d'une fonction arithmétique additive à valeurs dans un groupe abélien localement compact métrisable, *C.R.Acad.Sci.*, Paris, Sér. I., 313 (1991), 345-348, Théorème 2.)
- [4] Ruzsa I.Z., Private communication.
- [5] Ruzsa I.Z. and Tijdeman R., On the difference of integer-valued functions, *Publ. Math. Debrecen*, 39 (1991), 353-358.
- [6] Wirsing E., Unpublished result presented in a colloquium at Oberwolfach in April 1984. (See pages 22-23 of the Tagunsbericht 16/1984)

J.-L. Mauclaire

C.N.R.S., U.R.A. 212, Théories géométriques Université Paris VII 2, Place Jussieu

75251 Paris Cedex 05, France