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1. Introduction

Notation

N (resp. N*) is the set of ordinary integers (resp. positive integers, and P
(resp. p) is the set of the prime integers (resp. a generic element of P).

For any p in P v,(n) is the exponent of p in n.
Position of the problem

Definition. Let G be a group, and denote by * the group operation.
A function f is a G-valued additive arithmetical function if f is a N* — G
function such that f(mn) = f(m) * f(n) when (m,n) = 1.

Throughout this article we shall assume that G is a topological group.
Then it is a classical problem to give a characterization of the G-valued additive
arithmetical functions satisfying the following condition (C):

(©) Lim_(f(n+1)+J0)) = e,

n

where e is the neutral element of G and f(n) is the inverse of f(n).

This problem has been considered at first by P.Erdés in [2] in 1946 in the
case G = R, he proved that any real valued additive arithmetical function f
satisfies the condition (C) if and only if there exists a constant ¢ such that
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f(n) = c-logn for any n in N*. If G = R/Z the solution has been provided
by E.Wirsing [6] in 1984; in this case we have f(n) = c - logn modulo 1.
Extending results of Z.Dardéczy and I.Katai [1] who solved this problem for
metrical compactly generated locally compact abelian group, I proved in [3]
that if G is an abelian locally compact group, an additive function f satisfies the
condition (C) if and only if there exists a continuous homomorphism ¢ : R —
— G such that f(n) = p(logn) for any n in N*. This cannot be extended to all
groups. I.Z.Ruzsa and R.Tijdeman proved in [4] that there exists a topology
on the group of integers (with no continuous characters) and an integer-valued
function f satisfying the condition (C), and I.Z.Ruzsa [5] has an example in
which f is a real-valued function and the group of the reals has a topology
such that the continuous characters separate the elements of this group. In
this paper a characterization of arithmetical additive function f with values in
a general locally compact group satisfying the condition (C) is given.

2. The result

The result presented in this paper is the following

Theorem. Let G be a locally compact group. An additive arithmetical
function with values in G satisfies the condition (C) if and only if there exists
a continuous homomorphism ¢ : R — G such that for any n in N*, f(n) =

= p(logn).
3. Proof of the theorem

I. It is clear that if there exists a continuous homomorphism ¢ : R — G
such that for any n in N*, f(n) = ¢(log n), by continuity, the additive function
f(n) will satisfy the condition (C) since we have

JLim f(n+1)* f(n) = Lim ¢ (log(n + 1)) * p(logn) =
= Lim ¢ (log(n +1)) x p(~logn) = Lim ¢ (log(n +1) - logn) =

= Lim ¢ (1og (222) ) = (og(1) = p(0) =<

n—+4o0o
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II. We assume now that f satisfies the condition (C).
II-1. We shall prove the following

Proposition. Let G be a topological group and f a G-valued additive
arithmetical function satisfying the condition (C). Then f is a completely
additive function, i.e. for any m,n in N* we have

f(mn) = f(m)  f(n).

Proof of the proposition.
a) We have the following
Lemma 1. For any m,n in N* such that (m,n)=1 we have

f(m) + f(n) = f(n) * f(m).
Proof. Since f(m-n) = f(n - m) and (m,n) = 1, we have f(m) * f(n) =

= f(m-n) = f(n-m) = f(n) * f(m).
b) We say that f satisfies the hypothesis (H) if

given any k in N, f(2%) = (£(2))*.

From the Lemma 1 we shall deduce

Lemma 2. If f satisfies the hypothesis (H) then for any p in P and any
k¢ in N we have

F)F « f(p)* = f(p)* * F(2)*.
Proof. We remark that the hypothesis (H) gives

F)F « f(p)* = £ (2%) * f(p)".

Now we prove the result by induction. Since Lemma 1 gives the result if £ = 1,
assume that Lemma 2 is true for some £ > 1. We have the equalities

F2)F * f(R)! = £ (2) * f(p)*+ = £(2%) * (f(p) * fF(0)°) =
= (£ (2) * £(0) * f(R)" = (F(p) * £ (2%)) * f(p)" =
= f(p) x (£ (2) x F(P)) = F(@) x (f(P)* + F (2¥)) =
= (f(p) * f(P)*) * F (2*) = f(p)** % F (2F) =
= f(p** « £(2)".

c) Now we prove
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Lemma 3. If f satisfies the hypothesis (H), then for any p in P and any
kin N we have

(£2p))* = £(2)* * £(p)* = F(p)* * F(2)*.

Proof. Lemma 2 gives that

F2)F « f(p)* = £(p)* * £(2)*.

Now, due to the hypothesis (H), the case p = 2 is immediate. Moreover, if
p > 2 we remark that if k = 0, the result is trivial, and if ¥ = 1, Lemma 1 gives

that
f(2p) = £(2) = f(p) = f(p) * (2)
and so Lemma 3 is true for k = 0 or 1.

We prove the result by induction. Assume that Lemma 3 is true for some
k > 1. We have the equalities

(f2p)**! = (£(2p) * £(2p)) * (F(2p)* 1) .

Now, since (2, p)=1, we have
f(2p) = £(2) = f(p) = f(p) * £(2),

and using (H), Lemma 2 and the induction hypothesis, this gives that

(£(2p) " = ((F(2) * £(P)) * (f(2p))) * (f(2p)*~1) =
= ((f(p) * £(2)) = (f(2p))) * (f(2p)*"}) =
= ((f(p) * £(2)) * (f(2) * f(p))) * (f(2p)k—1) -
= [f(p) * (F(2) * £(2)) * F(P)) * (f(2p)*~ ) =
= [f(p)  (F2)%) * F(®)] + (F2p)*~Y) =
= [£(p) = (f(p) » £(2))] » (f(20)* ) =
= [f()* * £(2)°] * [£(@)* ' + F2)* 1] =
= [£2? « f2)?] * [f()* " % (2] =
= [£(2?] + S+ £ =
= [£(2)%] * [f2* 1+ f(p)**'] =  (by Lemma 2)
= f(2)F* + f(p)*H1.
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d) We prove that f is a completely additive function, i.e. for any m, n in
N* we have

f(mn) = f(m) * f(n).

Proof. By Lemma 1 it is sufficient to prove that if p is any prime and &
any element of N, then we have

f(2*) = f(p)*.

e) We introduce some notations. a is an even integer, and if k is a positive
integer we put

k-1

a—-1

Se(@)=aft"'+a""24+ .. . 4a+l=

Then, if n tends to infinity, we have by hypothesis

f(a*n+ Si(a)) * f(a*n+ Se(a) — 1) — ¢,

and since

k_
a"n+.5'),(a)—l=a"n+aa 11 —1=a*n+a*F ' +a*24+.. . +a=

=a-(a*"n+ Si_1(a))

and
(a, a*"'n+ Sk—l(ﬂ)) =1,

we get that
f(a*n+ Si(a) = 1) = f(a) * f (a*'n + Si-1(a)) ,

and this implies that, if n tends to infinity,

f (a*n + Sk(a)) * f(a) * f(a*~1n + Si—1(a)) — e.

Now if k is a given positive integer, k > 2, and n tends to infinity, then for any
£ satisfying 2 < £ < k we have

f (a'n+ Su(a)) + f(a) + f (a*~n + Se-1(a)) — e,

and as a consequence we get that

( (a*n + Su()) * F(@) * F (@ Tn + Su1())) +
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(f (@*'n+ Si-1(a) » F(@) + F(aF2n + Sia(a) ) +
*...% f(a?n+ Sy(a))*

+ (£ (a®n+ $2(@)) + (@) « F(an + 51(@)) —

By cancellation we obtain that

( (@*n+ Su@) +F@ "+ Tlan+ S1(a))) — e

and since we have Sy(a) = 1, we get that

(3 (f(@*n+Su(@) + F@ "+ Flan + 1)) —e

Now we set

n = Sk(a) - (a-Se(a) - m+1).
We then have

f(a*n+Sik(a)) = f (a* (Sk(a) - (a- Sk(a) -m + 1)) + Se(a)) =
= f (Sk(a) - [a (a-Sk(a)-m+1)] + Sk(a)) =
= f(Se(a) - [a* (a- Si(a) - m+ 1) +1]).

Now we remark that

[a* (a- Sk(a) -m+1)+1] =a** - Si(a) m+(a* +1) =
=a**! . Si(a) m+ [(a" -1)+2) =
=a"*' . Si(a) m+[(a=-1)-Sk(a)+2] =
= Si(@)- (! - m+ (a— 1) +2,

and so, since a is even, Sk(a) is odd and we deduce that
(Sk(a), [¢*(a-Sk(a) - m+1)+1]) =1,

which implies by Lemma 1 that

(i) £ (a* (Se(a) - (a- Sk(a) - m+1)) + Si(a)) =

= f(Sk(a)) * f (a* (a- Sk(a) -m+1)+1).
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But, if m tends to infinity, we have

f(a*(a-Sk(a) - m+1)+ 1) * f (a*(a - Sk(a) -m+ 1)) — e,

and so, since
(a*, a-Sk(a) m+1) =1,

we obtain that

(#4) f(a*(a-Se(a) - m+1)+1) % f(ak)* f(a-Se(a) -m+1) —e.
Now in our case where
n = Si(a) (a-Se(a) - m+1),

we have also
an+1=a-[Sk(a) (a-Sk(a)-m+1)]+1,

and so
flan+1) = f(a-[Sk(a) - (a-Sk(a) - m+1)]+1),
f(an) = f(a-[Sk(a) - (a-Se(a) -m+1)]) =
(iv) = f(a) * f(Sk(a)) * f(a - Sk(a) -m+1),

since (a, Sk(a)) = (Sk(a), a-Sk(a) - m+1)=(a, a-Sk(a) - m+1)=1.
Moreover, since
f(an+ 1) * f(an) — ¢

when n tends to infinity, if we replace n by the special sequence defined by
n = Si(a) (a-Sk(a) -m+1),

by (iv), we obtain that when m tends to infinity
(v)
f(a-[Se(a) - (a-Se(a)-m+1)]+ 1)xf(a)*f(Sk(a))*f(a - Se(a) - m+1) —e.

This gives that, since

(F(a*n+Se(@) s fla) s Flan+ 1)) —e by (i),

if
n = Si(a) (a-Se(a) - m+1),
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142
by substituting in (i), we have

(F(a*(Se(a) - (a- Su(a) - m+ 1)) + Su(@) s F@* "+

+f(@(Se@) (a-Se(@) m+ D)+ 1) —e by (i),

which can be written as

£(Se(a)) # £ (a*(a- Se(a) -m+ 1)+ 1)+ F(a) '#

*f(a-[Si(a)-(a-Si(a) m+1)]+1)—e,
and (iii) and (v) give us

F(Sk(@) * [f(@*) * f(a - Si(a) - m+1)] + F(@) '*

+ [F@) + FGu(@) * Fla - Se(@) - m+ D] — e,
which can be written as

(vi) £(Sk(a)) * [f(a*) % f(a - Si(a) - m +1)] + F(a) *

f(Sk(a)) * f(a - Sk(a) -m+1) —e.

To conclude we shall use the following
Lemma 4. If (m,n)=1 then for any k in N we have

f(m) * f(n)* = f(n)* f(m).

Proof. If k = 1 this is Lemma 1. Assume that for a given positive integer

k we have

f(m) * f(n)* = f(n)* * f(m).
Then for k + 1 we can write

f(m) * f(n)**! = f(m) * [f(n)* + f(n)] =
= [£(m) = f(n)*] + f(n) =

= [f(n)* « f(m)] * f(n) = (by our induction hypothesis)
= f(n)* + [f(m) + f(n)] =
= f(n)* * [f(n) * f(m)] = (by Lemma 1)

= f(n)**! « f(m),
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and Lemma 4 is proved. We now remark that since
(a, Sk(a)) = (Si(a), a-Si(a) m+1)=(a, a-Si(a) m+1)=1

the relation

£(Si(a) * [f(a*) * f(a - Sk(a) - m +1)] + F(a@) *

*f(Sk(a)) * f(a-Sk(a) - m+1)—e

can be written as

[#(a*) + f(a - Se(a) - m + 1)+ £(Se(a))] +

* [f(Sk(a)) * f(a-Sk(a) -m+1)= f(a)k] —e

using Lemma 1 and Lemma 4, which can be reduced by cancellation to the
short expression

f(a*) +F@) —e,
which means that
f(a*) = f(a)*.
So we have obtained
Lemma 5. If a is even and k is any positive integer we have

f(a*) = f(a)*.
Now, if a = 2, we get evidently

£(25) = f(2)%.
And if a = 2p, where p is any odd prime, we obtain that

£ ((20)") = (F(20))"-
But f satisfies the hypothesis (H) since
any given k in N, f(2%) = (f(2)).

So, by Lemma 3 and Lemma 5, remarking that

£ (2" 0%) = £24) « £(0Y),
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we get

F25) « (%) = £((2p)*) = (F2p))* = F(2)" * f(p)* = £ (2%) * F(0)".
This gives that
£ (2%) £ (0*) = £ (2%) + f(0)",
and so we obtain that
f(#*) = f(p)*.
This ends the proof of the complete additivity of f.
II-2. We finish the proof of the theorem.

Consider F, the closure in G of the group generated by the values of f
on P, the set of primes. This group is abelian by construction, since f is
completely additive, and since G is locally compact. The complete additivity
of f implies that as a F-valued additive function, f satisfies the condition (C),
and by [3], since F is an abelian locally compact group, there exists a continuous
homomorphism ¢ : R — F such that f(n) = p(logn) for any n in N* [3]. A
fortiori, this homomorphism is a continuous homomorphism ¢ : R — G such
that f(n) = ¢(logn) for any n in N*, and this ends the proof of the theorem.
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