Annales Univ. Sci. Budapest., Sect. Comp. 14 (1994) 105-118
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Abstract. On the basis of a real problem connected with landing of
airplanes the paper investigates a queueing system with Poisson arrivals and
exponentially distributed service time in which the service of a request can
be started upon arrival (in case of free system) or (in case of busy server, a
queue or noncorresponding position of request) at moments differing from
it by the multiples of cycle time T. For the service discipline the FIFO
rule is assumed. Using the embedded Markov chain technique (considering
the system at moments just before starting the service of a request) the
generating function of ergodic probabilities is found and the condition of
existence of ergodic distribution is established.

1. In some real systems queues with special cyclic-waiting discipline exist.
The discipline is functioning in the following way: if the entering entity cannot
be serviced upon arrival, then it joins the queue in which it is cycling with
fixed cycle time, its further requests for service can be put at the multiples of
cycle time. The nécessity of investigation of such systems was mentioned me by
V.Cerié¢ from Zagreb University in connection with verification and validation
of results of simulation describing the landing of airplanes. In the airport airside
systems cyclic queueing may appear when the airplanes arrive in the airside of
airport. The airplanes which are not allowed to land in the moment of arrival
(since the horizontal distance between this airplane and the currently landing
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one is too small or because some other ones are already waiting for landing) are
going to circular manoeuvre. From this manoeuvre the airplane can put the
next request for landing only after arriving at the starting geometrical point of
manoeuvre on condition that no airplane with earlier arrival time is queueing.

On the basis of this problem we are going to consider a queueing system in
which the entering requests can be taken for service only at moments of their
arrivals (if the system is free) or at moments differing from it by the multiples
of cycle time T (if the server is busy or there are some other requests waiting
for service). If there is present at least one request then the service of arriving
one can start when the services of all earlier entered requests are completed,
i.e. the FIFO rule takes place. We assume that the arrivals form a Poisson
process and the service times are exponentially distributed. If there were no
further restrictions excluding the types of these distributions we could consider
the simplest case of queueing systems where the services of consecutive requests
immediately follow each other. But in our case the service process will not run
continuously, during the ”busy period” there will also be intervals necessary
to reach the starting positions for service. In this paper we propose a possible
approach to the investigation of described system modifying the service time by
the period necessary for the following request to get to the starting position,
making in such way the service process continuous. For the description of
functioning of the system we use the embedded Markov chain technique. We
formulate the result of the paper in form of the following

Theorem. Let us consider a queueing system in which the arriving
requests form a Potsson process with parameter A, the service time distribution
is exponential with parameter p, and the service of a request can be started only
at moment of its arrival or (in case of busy server, a queue or noncorresponding
position of request) al moments differing from it by the multiples of cycle time
T according to the FIFO rule. Let us define an embedded Markov chain whose
states correspond to the number of requests in the system at moments just before
starting the service of a request ty — 0 (where ty is the moment of beginning of
service of the k-th one). The matriz of transition probabilities for this chain
has the form
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whose elements are determined by the generating functions
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The generating function of ergodic distribution P(z) = Y piz* for this chain
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has the form

B()(Az + ) — 2AG)(A + )
H[B(z) - 2] '

(4) P(z) = po

where
A 1-— c—(A'H‘)T

PO:I— ,\+ye"‘T(l—e“‘T)'

The condition of existence of ergodic distribution is the fulfilment of inequality

A e (1 - e“‘T)
(5) ; < 1 - e_x’[‘

All the remaining part of the paper is devoted to the proof of this theorem.

2. We replace our original system with idle periods by another one in
which the service process is not interrupted, namely the service of a request
is composed from two parts: the first part means the real service, the second
part covers time from the completion of service till moment when the following
request reaches the necessary starting position.

For the description of functioning of the system we will use an embedded
Markov chain whose possible states are the number of present at moments t; —0
requests in the system, i.e. we consider it at moments just before starting the
service of the k-th one. We find the transition probabilities for this chain. We
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have to distinguish two cases: at moment when the service of a request begins
the following one is present or not. Let us consider the second possibility, it
appears in cases of states zero and one. Let us assume that the service time
of first request is equal to u, the second one appears v time after beginning its
service. The probability of event {u — v < t} is equal to

(6) Pt)=P{u—v<t}=

u o0 U

t
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The duration of period from the entry of second request till the beginning of
its service is equal to

u—v+ [T— (u—v—l(“;“)Tﬂ = (1(";”) +1)T,

where I(z) denotes the integer part of number z. This formula is valid
for all points excluding the multiples of cycle time T. At those points the
corresponding value may be defined by the right or left continuity. In the
first case the above formula remains valid for all points, in the second case for
the zero point it must be defined separately. In order to find the transition
probabilities we are interested in the number of requests entering during this
period. According to (6) the duration of this period is equal to ¢T" with

) A ; . . .
probability Yt a (8“‘('_1)T - e"“’T> and the generating function of number
U
of requests appearing during this time is
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where the order of summation may be changed because of the absolute summa-
bility of corresponding series. The last formula was obtained on condition
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that during the service time one request obligatorily appears, so the desired
generating function will be

A= By Azt 0D
Adp A+p 1-—eBO-2)4uT
(o e]
where ’\i“ = / e~ pe~#*dzr is the probability of event that during the
0

service time of a request another one does not appear at all.

Now we are going to determine the transition probabilities for all other
states. In this case at moment when the service of the first request begins

the second one is already present, too. Let z = u— 1 (%) T and y mean the

deviation of interarrival times mod T (Consider the series of cycles starting

from the entry of first request and take the one during which the second request

appears. y means the difference between the arrival moment of second request
. . o . . v

and beginning of this cycle, it is obviously equal to v —1I (T) T). It can

be easily seen that y has truncated exponential distribution with distribution
. l—e . . .

function —CTT. The duration of period between the starting moments of

-— e_

services of two consecutive requests is

u ) u .
I(?)T+y if <y and (I(T)+1)T+y if z>4y.
The probabilities of appearance of k requests during the investigated period in

two cases respectively are

(/\{I(%l!T+y})k exp (—-,\{I(—;;)T+y}) and

k
(A {{1(#)+1]T+y}) u
k! exp (-3 {1 (T) +1|T+y}).
Let us fix y and consider the division of service time into intervals of length 7.
Each such interval is divided into two parts by y (the first part has length y, the
second part T — y), in the first subinterval is valid the first probability, in the
another the second one. Let I (%) = 1. The generating function of number of
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requests entering the system on condition that the mod T interarrival time is
equal to y will be

M (1) = zz{ / M P
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where £ is a random variable denoting the number of requests appearing
. o . . e~y

during the investigated period. Multiplying this expression by ICTXT and

integrating by y from 0 till T we finally get the desired generating function of

transition probabilities
B(z) = E b;2* =
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3. Let us consider the embedded Markov chain describing the functioning
of the system. The matrix of its transition probabilities has the form (1). It
remembers that for the M/G/1 system, but here the probabilities appearing in
the first two rows are different from probabilities in the other ones. Denoting
the ergodic distribution by p; (i=0,1,...) and introducing its generating function

00
P(z) = Y piz* we have
=0

j+1
pj = poa;j + p1a; + Zpibj—i+1;
i=2
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Y opid = poA(2) + prAGR) + Y Y pibjip1d =
j=0 j=0i=2

= %P(Z)B(Z) - %poB(Z) + poA(2) + p1A(2) — p1B(2),

from which
_ Po[24A(2) - B(2)] + ;12 [A(2) — B(2)]
z— B(z) '

This expression contains two unknown probabilities py and p;. But

P(z)

Po = poGo + p1do,

i.e.
1- ap A
Po = —Po.
B

=
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The unknown pg we find from the condition P(1) = 1:
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The embedded chain is irreducible, so pg > 0. From
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we get that
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must be fulfilled. After substitution of
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we have that

(1 + %) A1) - %B’(l) =
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A AT 1 — e~ (A +8)T 0
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so 1 — B’(1) > 0 must be fulfilled. This leads to the inequality
« ATe=?T A 1 — e~ 4T

1—-e2T )+ p’\T(l — e~ 2T)(1 — e—#T) >0,

le.
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what is equivalent to (5). Substituting the corresponding values to (7) we
obtain

by 1 — e~ (A+8)T
A+ pe2T(1—e-uT)
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The theorem is proved.

Remark. One can also find the distribution function of the idle period.
Let us fix as initial point the moment of arrival of the request on the circle
with circumference T and let the entry point of second request be situated at a
distance y, the moment of completion of service of the first request at a distance
z from it (of course both of them are considered mod T). z and y obviously

1 e ep . e . 1—e ¥
have truncated exponential distributions with distribution functions f—eﬁ
— e_
1 J— e_Ay . oy sye,s e
and 1= T respectively. There are two possibilities y > £ and y < z. The

length of idle period in the first case is equal to n = y — z, in the second case
n =T — z+y. The probability of event 7 < w in the first case will be equal to

w oy T y e “ay
[
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and in the second case
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The same result can be obtained if we first integrate by the deviation of arrival
times y, namely
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T-wz4w T T w+4z-T \ Ay uz
e~ pue”
[T e ] T Rt
i

T-w =




On a simple continuous cyclic-waiting problem 113

After integration in both cases we come to the desired distribution function

F(w) = P{n < w} =

_ ul T{ B _ B e A 0w
I=e )1 —e#T) | A+p A+p Atp

A AT - u(T-w) - u(T-w) B _aw-uT —uT
’\+”e +A+ﬂe +,\+“e e .
L. Lakatos

Department of Computer Algebra
E6tvos Lorand University
XI.Bogdanfy u. 10/b.

H-1117 Budapest, Hungary








