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1. Introduction

Let Q(i\/ﬁ) be an imaginary quadratic extension of Q, I be the set of
integers in Q(iv/D). Let a € I, @ # 0, and @ # unit. Let F = {fy =
=0,fi,..., fi-1}, t =| @ |? be a complete residue system mod a.

Then, for each # € I there exists a unique ag € F and a unique /) € I
such that

(1.1) B = ao+ ap.

The function J : I — I is defined by J(8) = #1. Observe that for K _ma.x| I

we have

(1.2) 16115 o 'Lﬂ

The inequality (1.2) implies that for every 8 € I the path, defined by iterating
J:
ﬂ’ ﬂl = J(ﬂ)y ﬂ2 = j(ﬂl)a )

is eventually periodic.

Some S € I is said to be periodic (with respect to this expansion) if there
is some integer k > 0 for which g = J*(8) holds.

Let P be the set of periodic elements. The following assertions are obvious:
(1) 0 € P
(2) (F, ) is a number-system (N S) if and only if P is singleton, P = {0};
(3) If Il € P, then

. K
. i< ————
(1.3) | I_Ial 1’
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(4) If 0 € P, then J(II) € P. Let G(P) be the directed graph defined by
I — J(II) for every Il € P. Then G(P) is a disjoint union of circles;

(5) If a—1 is a unit in I, then no NS with base a exists, since for an
arbitrary choice of F' the elements z; = (1 — a)f, f € F are periodic with
period 1.

To prove (1.3), assume that I € P, and I = I; — II; — ... — (= o).

Assume that _max 1] II, |=| o |. Apply (1.2) with 8 = Iz_;, B = .
(1.3) it follows immediately.

In our paper [1] written jointly with B. Kovacs we determined all possible
bases for which (F*,a), F* ={0,1,...,|a|? -1} isa NS.

The problem to determine all the possible coefficient systems F' for which
(F,A) is a NS, seems to be very hard. In the other hand, if F is given, to
decide whether (F,a) is a NS or not, due to (1.3) is a simple task.

G. Steidl [2] proved that in the ring Z[i] of the Gaussian integers for every
| @ |> 1 except @ =2, 1+, 1~ i always exists a suitable coefficient set (,
by which ({4, @) is a NS. She effectively constructed {,. We shall extend her
result to arbitrary imaginary quadratic fields.

2. Construction of the coefficient system

Lemma 1. Let e,b,c,a € Z be arbitrary integers, d = ae — bc, S be the
matriz
e b
S= [—c a ] ’

Assume that d # 0. Then there ezists a unique sel F = {L, v =01,...,
| d| =1} of integer vectorials in Z, such that

r” * —
2] =sn
satisfies the following conditions:

d d
(1) ry, S8, € (—%, |_2'] ’

(2) r, =r, (mod d), s, =s, (mod d) cannot hold simultaneously forv # p.

Proof. This assertion is well known in number theory.
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Remarks.
(1) If d is odd, then F = —F.
(2) If b= c =0, then F is of simple shape. Let k, resp. I run over the integers
1d] |d l _id|
2 2 2

is the collection of all possible vectorials [ I] .

d
satisfying — <ek<— <al < I ) I, respectively. Then F

(3) If e = a = 0, then F is of similar shape.

If D+ 1% 0 (mod 4), then {1,iv/D}, while for D # —1 (mod 4) {1,w} is an
integral basis in I, where
_1+#/D

Let

Let D # —1 (mod 4), a = a +ibV/D, d:= a@ = a® + b2D. We define

Im &
Ca := {€ = k+ilv/D} to be those integers for which r = Re @e and s = n\}ge
satisfy the conditions: r,s € ( ; g] Explicitly

r=ak + blD,

s = —bk +al.

From Lemma 1 we have that {, is a complete residue system mod d.

Since ae = r + isx/ﬁ,

d?
dle|’=r?+s’D< T(1+D)’

whence i
je|< —\/1 + D.
Consequently for II € P we obtain that
1 v1+D
(2.1) [m|<

21-1/Vd
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2 2

Let D = -1 (mod 4), a = a+bw, d = aa = (a+-;-) +%D. We define

Ca = {e = k+ 1w} as the integers for which @e = (a+b)k +b lE + (al — bk)w =
= r + sw satisfies the conditions r,s € (—g, ;] .
Since

r+sw= (r+%) +i§\/5,

we obtain that

| r+ sw |?= (r+%)2+

2 3\’
Ep<(® =2 9+D
4D__(4d) +161) (9+ ),

consequently | e |< -@\/9 + D, whence by (1.3) we get that

\/_+D

22) TS e

3. Formulation of the theorem and simple cases

Theorem. Let o be an arbitrary integer in an imaginary quadratic

extension field Q(iv/D), such that | a |> 1 and | 1 — a |# 1 holds. Then
(F,a) is a NS with a suitable coefficient set F.

Lemma 2. Ifa € Z, a # —=2,-1,0,1, then ({5, @) is a NS for every
estension field Q(i/D).

Proof. fa € Z,thena=a+0-ivVDora=a+0-w, d=a% (4=
= {[’Ic]} for which I, k € (‘m _|0_|] Clearly we can expand each

2’ 2
I Ial]}
9 ' 9 '

Q

v,u € Z in a NS with base a and coefficient system {u € (-
Ifu=3 kia', v=3 la’, then

B=u+ivVD= Z(kt + I, Di)a',
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B=u+vw= E(k, + Lw)d*

are the corresponding expansions of the integers 3 in I.

Lemma 3. Ifa = ibvV/D or a = bw, then (Cara) is a NS, except the cases
b==1 for D=1 and 3.

Proof. We can argue similarly as in the proof of Lemma 2. In the
exceptional cases | & |2=1 (o = {0}.
Lemma 4. Letlle P, NI #0, I=p+ igv/D or Il = p + quw, according

to whether D+ 1 % 0 (mod 4) or D+ 1 =0 (mod 4), wherep,q€ Z. Ifq #0,
then

1\? D+1
(3.1) (l—ﬁ) gﬁ— for D+ 1% 0 (mod 4),
and

1\? _1D+9
. -—) <= = .
(3.2) (1 \/2) <iD+1 for D+1=0 (mod 4)

Proof. From (2.1), (2.2) we have

s D+1 _

(3.3) p°+¢'D< -2 (=: Rpq)
0,y 9D

(3.4) (;»+2)+4D516(1__5d)2 (=: Sp.4)

whence (3.1), (3.2) immediately follow.
Lemma 5. All the rational integers e = k + 0ivD satisfying

d 1 1
k<—min(—,——)
e l<gmin {727 18]

belong to (o if D+ 1 # 0 (mod 4). All the rational integers e = k+0-w of the

interval
| e|< émin (; L)
-2 la+b]" |b]

belong to (o if D+ 1 =0 (mod 4).
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Consequently if p € P, then

d? 1
—_——— <
4 max {a2,b?} — Rp4

(3.5)
for D+ 1# 0 (mod 4), and

i 1 <s
4 ‘max {(a + b)?,02} = "D

(3.6)
for D+ 1 =0 (mod 4).
Proof. The assertions are obvious consequences of the definition of (,.

4. Proof of the theorem for D + 1 # 0(mod 4)

We assume that D > 2. The case D = 1 is completely solved in [2].

Assume first that there is a real 0 #£ II € P for some a = a + ibv/D. If
1<|a|<|b]|, then from (3.5),

Vi/i-1) < T = [AX DG (A4 DI +a? _

lal> = 2]a]
_d ¥ 4 d
" 2|lal 2|a|~2|a| 2|a|D’

1 1
=+ + ,
vd ' 2|a|  2|a|-D

1<
If D = 2, then from (3.5), and from 36> < 1,5d we deduce that

which cannot occur if D # 2.

2
d? (1 - %) < 1,5d, whence d < 4 follows. Since d = 4 implies that either

b =0 or a =0, and these cases were treated in Lemmas 2 and 3, we can
consider only the case d = 3, |a| = |b] = 1. We shall treat these cases later.

If |a|>| b ]|, then from (3.5),

b2 + b2D

Vd(Vd=1) < \/(1+ D)a? = o

fa|?<
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1 d__ |5
< —_— __ —

whence

(4.1) (2]b]-1)d—2|b|Vd—|b*<0.

This inequality cannot be true for d > X?, where

Xy = 2”! spr— (L + V2TED.

Since z; = 1+/2, (4.1) could be held only for |a |=] b|=1,d=2.For | b|> 2
we have d > b%(1 + D) > 3b%, and

W > b2(1+ /2] )2 b?
(2151 -1)2 (V218]-1)%

thus (4.1) cannot be true.

We proved the following

Lemma 6. Leta = a+ibv/D, | a |>1, D> 2 D+1 %
20 (mod4), a#0, b#0. Then P does not contain real Il # 0 ezcept
perhaps the cases D=2, |al|=|b|=1.

Furthermore, computing Rs ¢ and Rz 7 we obtain that (3.1) is not satisfied
fd>D+1and D>5and for D=2,ifd> 7.

To finish the proof we have to consider only the cases | a |=| b |= 1;
la|=2,|b=|1, D=2 If dis odd, then (¢ = —(a, furthermore {(_o = (a,
(s = <o, thus it is enough to consider one of a,a, —a, —a in these cases.

Let @ = 1+ iv/2. Then ¢, = {—1,0,1}. Observing that Rz 3 < 4, we get
that for I = p+iqv/2 we have p?+2¢2 < 3. Thus | p|< 1,| ¢|< 1. ¢ = 0 cannot
occur since then II = p € (o, and J((a) — 0. Thus Il € {£iv2, +1 +iV2}.
But J%2(a) = J(1) = 0, J%*(—a) = J(-1) = 0, furthermore iv/2 = —1+
+la, —iv2=1+(-1)a, @=-1-iv/2a, -a=1+iv2a, and so all
the candidates for P have finite expansions.

Let o = 1 + 2iv/2. Then d = 6,

(a ={0,1,-1,iVD, -1+iVD, 1 —iVD}

and Ry ¢ < 3, whence p? < 3, ¢ = 0 should follow, thus T = p € {-1,0,1,} C
C (a, so thisis a NS as well.
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5. Proof of the theorem for D+ 1 =0 (mod 4)

In the whole section we shall assume that for « = a + bw the conditions
b>1,a#0,a+b# 0hold. I (F, a)is a NS, then (F, @) is a NS as
well. Since @ = (a + b) — bw, and in Lemmas 2, 3 the cases a = 0; b = 0,
consequently a + b = 0 were treated it is enough to prove the theorem under
the above conditions.

For short let £ be the set

d d 5\? D |, R
(—5, '2'], d_(a+§) +—4-—a + ab+b°FE

Assume that d > 1.

Lemma 7. Every rational integer k, |k| < = belongs to {a.

Proof. We should prove that k(a + b) € £, —bk € L holds for all k,

|k < %. If |a+ 4| > b, then (a + b)a > 0, consequently
|a+blla] _ a(a+b) 1/, b2D d
) = 2 < 3 Z4ab+ 3 < 2
If |a+ 5| < b, then a < 0 and
|alb _1.2 2
3 <3 = 2{a +ab+ b°E}

is equivalent to |alb < 1(a? + b2E), which clearly holds, since E > 1, a # —b.

Lemma 8. Ezcluding the integers a = —1+ 2w, 14w in the case D = 3,
and « = 14+ w for D =7, for the others the expansion ((a, ) either has a
nonreal periodic element, or it is a NS.

Proof. Assume in contrary that P C Z and there is a nonzero p € P.

Let first b = 1. If p; = J(p), then there is an e € (o such that p = e + dp,
consequently pa = ea + ap;, ea = r + sw, r,s € L. Thus (a + 1)p = r + dp,,

—p = s, whence p; ( + e _ 7 Hence |py| < |a-;-1| % Since p; ¢ (a,
from Lemma 7 we obtain that
(5.1) Lt ¢y < 014
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(5.1) fails for a < 0. Let a > 0. Then |p1| = G;I or at?2 according to
the parity of a. So we have that |p| = atl or = +2 for every p € P\ {0}.

Then either J(p) = p or J(p) = —p, J?(p) = p. In the first case —r =
= (d=(a+1)p1 = (o + B~ py, thus 5 > (a? + B
hold with the exceptions £ =1 and 2,a =1.

In the second case (J(p) = —p)) we conclude that g > |d+ (a + 1)||p1|
which is impossible for p; # 0.

Let > 2. If p, = J(p), then (a + b)p = r + dp;, —bp = s hold with some

r,s € L. Thus p, = r-;-s - gp, whence
la|,  _ la||8| la|
Since|p1|2||2 ,andlzabl+l H; ifb> 2, orif b =2, and |a| > 2, we

should consider the cases b = 2, |a| = 1, 2. If |a| = 2, then |p;| > 2, and (5.2)
cannot hold. If |a] = 1, then from (5.2) P C {0,1,—1}. We shall prove finally:

that 1, —1 € (a. This holds if ja + 4| < g and b < -; are satisfied. If a = 1, then

1+b< %(1+b+b2E) is valid for b > 2. If a = —1, then b < %(1-b+b2E)
is true with the exception £ =1, b = 2.
The proof is completed.

Lemma 9. ((a, a) is a NS if
(1) D>19 andd > 1,
(2) D=19 and d > 6;
(8) D=15andd>17;
(4) D=11and d > 8;
(5) D=7andd > 12;
(6) D=3 and d > 56.

Proof. If (@, a) is not a NS, then there exists a periodic element 7 =

q\?, ¢’D
= p+ qw with ¢ # 0. Then |1r|2=(p+§) +—4-24. From (3.4) we have
(1__1_)’<9+D_E+2
Jd) = 16E - 4E ’
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whence
E+2

va 4E(1+ 4E)
<
- JE -2

(=: AE).

Since d > E, this cannot hold for E > 6: < 1for E > 6. This proves
\/_ \/_

(1). Furthermore, A\ = 5,995; A2 = 6,65; A2 = 7,957; A2 = 11,64; A? =
55,35 whence (2)-(6) follow.

A) Completing the proof. Case D=3

Lemma 10. Let D = 3. Ifd > 6, and ({a, «) has a nonzero periodic
element 7, then it is a unit, = € {1, tw, xw}.
Proof. ¥ |7|2 > 2, then from (3.4) 2 < —;5, which does not hold
4{1- 712
for d > 6.
Lemma 11. Let D = 3. Then {%1, tw, 2w} C {a for alla withd > 7.

Proof. Since w =1 —w, —w = —1 + w, it is enough to prove that (a+
+b)k+bL, —bk+af € L for all the choices (k, £) = (0,0), (1,0), (-1,0), (0,1),
(0,-1), (1,-1), (-1,1). This is clear, if

(5.3) m := max(|a + b|, |a|, b) < g

Let first m = |a + b|. Then a > 0 (a = 0 is excluded), (5.3) is equivalent to
a® + ab 4 b2 — 2a — 2b > 0, which is satisfied with the exception a = b= 1.

Let m = |a|. Then a < 0, —a > b. (5.3) is equivalent to a®+ab+b?—2|a| >
> 0. If b = 1, then it fails only if a = —2. Let b > 2. Since

(5.4) a® = |afb - 2|a] + 4% = a® - |a|(b+ 2) + b2 > 0

holds for b + 2 < |a|, we have to consider only the cases @ = —(b+ 1). Then
(5.4) is equivalent to

la|* ~ lal(la] + 1) + (la] = 1)* = |a|* - 3a +1 > 0,

which holds for a < —3, i.e. for all possible choices of a.
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Finally we assume that m = b. We may assume that Ja + b| < b, |a| < b.
Then 1 € —a < b— 1. (5.4) is equivalent to

0<b’+a?+ab—2b=a’+b%—-(2-a)b.

If 2 — a < b then this is true. It remains the case 2—a=b+1,i.e. a=1-5.
The equivalent condition is 0 < b2 + (1 — b)2 — (b + 1)b = b — 3b + 1. This
holds for b > 3.

We proved (5.4) with the exceptions: a = =1+ 2w (Ja|> = 4); a =
==24+w(le)?=3);a=14+w (la-1/=1!).

To finish the proof we shall prove

Lemma 12. Let F={0, 1, w} anda=-1+2w ora=-2+w. Then
(F, a) is a NS.

Proof. Observe that § € F implies |8] < 1. If » € F, then, by (1.3)
In| <

N ~ 1,36, whence it follows that # = 0 or 7 is a unit. |e| = V3

holds in both cases.

Let a = =14+ 2w. Then -1 =w+ a(-1+w), —w = 1 + a(-1 + w),
-l14w=1+4aw, J(-1 +w) = w, furthermore 1 —w =w + 1 a. This proves
the first case.

Let « = =2+ w. Then —1 = w + wa, —w = 1 + wa, whence J%(-1) =
= J}(-w) = 0. Furthermore —1+w = 14+a,1-w =w+a(w-1), ie.
J* (=14 w) =0, J3(1 —w) = 0. The second case is proved.

The theorem is completely proved for D = 3.

B) Completion of the proof. Case D=7

The critical values of a = a + bw are

(a,0) = (-1,1), (1,1), (-=2,1), (2,1), (-3,1), (-1,2), (-2,2), (1,2), (-3,2).

(a,b) = (—1,1), (—2,2) are excluded by the condition a+b # 0. In the notation

2
b2 -
d(a,b) = (a+%) + 47 we have

d(1,1) =d(-2,1) =4, d(2,1)=d(-1,2) =7, d(1,2)=d(-3,2)=11.



102 I. Kdtai

The integers in Q(+/7i) having norm 2 are {-14w, w, 1-w, -w}. We
show that all they belong to {a if additionally |a|? > 4 holds.

The inequalities (a + b)k + 2b¢, —bk + af € L hold for all choices of (k, £) =
(-1,1), (1,-1), (0,1), (0, —1) and for all (a, b} = (2,1), (-1,2), (1,2), (-3,2).
This can be checked immediately.

Furthermore, if there is a 7 € P with |7|2 > 2, then |7|? > 4, and from

(3.4) we obtain that d < 4. Since |a + b| < g, |b] < g hold for the listed cases
if d > 7, therefore 1, —1 € {a as well.
Thus ((a, a)isa NSifd > 6.

The remaining cases are a = 1 4+ w, a = -2 + w.

Lemma 13. Let D = 7, F; = {0,1,-1,1 - w}, F, = {0,-1,1,w},
a;=14w, ag=—-2+w. Then (F;, a;) and (Fa, az) are NS.

Proof. In both cases /Isléiarx 18] = V2, |ai| = 2. If 7 is periodic, then by

(1.3) |x| < V2, consequently it is enough to prove that all integers with norm
2 have finite representations.

Let first o = @) = 1+ w. Then w = (-1) + @, —w = 1 + (—1)a, whence
J*(w) = J*(—w) = 0. Furthermore w—1 = (1-w)+wa which gives J3(w—1) =
= (0. The assertion is true for a = a;.

Let now a = a3 = -2+ w. Since ~w =w+aw-1),w-1=-1+a,
1-w=14(-1)a we have J3(w —1) =0, J}(1 —=w) =0, J3(~w) = 0. The
proof is completed.

C) Completion of the proof for D = 11, 15, 19

1)} In the case D = 11 only the integers & = 14w, @ = —2+w are remained
to consider.

Let @ = 1+ w. Then (a = {0,1,-1,-14 w,l —w}, d = |a|?> = 5. Since

V3
= f iodic el t h <
‘r’rég |8 = V/3, for a periodic element 7 we have |x| < 71 < V/3, whence
n €{0,1,-1} C ¢a. Thus = = 0.

The case =2 + w can be reduced to the case 1 + w as follows. Since for
a=14w,d=>5=o0dd, (o = —(a, therefore (—a, {a) is a NS as well, and by
complex conjugation (—-@, {«) is a NS. But —@ = —2 + w, and we ‘are ready.
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2) Let D = 15. We have to prove the theorem fora = 1+ w, a = -2 4 w.

Lemma 14. Let D=15, oy = 14w, ag = -2+ w, F; = {0,1,-1,1-
—w, -1+ w,2-w}, F2 ={0,1,-1,w,—w,1 +w}. Then (a;, F;) are NS's for
i=1, 2.

Proof. Let a = 1 +w. Then max |8] = 4, |a|] = V6. Thus 7 € P satisfies

|x| < T whence |7|? < 7 follows. All the integers with norm < 7 are

4
V6 —
{2, -2, w, ~w, 14w, -1 —-w}UF;.

All they have finite expansion in (F;, aj). This is clear, since 1 + w = a,
-l-w=-aq,w=-14a,~w=1-a,2=1-w+l-a, -2 = (-14+w)+(-1)a.

Let now a = —2 + w. The situation is very similar. We should prove
that {2, —2, 1 ~w, w — 1, —1 — w} have finite expansions in (Fz, a3). Since
2=w+(-Da, -2=-w+a,-l4w=141-a,1 —w=(-1)+ (-1a, we
are ready.

3) For D = 19 the only remained case is « = —1 + w, but this is excluded
by a+b #0.

The theorem is completely proved.
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