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1. Introduction

First we give a brief introduction to the Vilenkin and Vilenkin-like systems.
The Vilenkin systems were introduced in 1947 by N. Ja. Vilenkin (see e.g. [11]).
Let m := (my, k € N) (N :={0,1,...}) be asequence of integers each of them
not less than 2. Let Z,,, be the m;-th discrete cyclic group, i.e. Z,, can
be represented by the set {0, 1,...,m; — 1}, where the group operation is the
mod m; addition and every subset is open. Haar measure on Z,, is given in
the way that the measure of a singleton is 1/my (k € N). Let

o0
Gm =X Zm,.-
k=0

The elements z € G,,, can be represented by the sequence z = (z;,7 € N),

where z; € Z,,, (i € N). The group operation on G, is the coordinate-wise

addition, the measure (denoted by u) and the topology is the product measure

and topology, respectively. Consequently, G, is a compact Abelian group. On

throughout this paper the condition sup m, < oo is supposed, that is G, is a
n

bounded Vilenkin group.
Give a base for the neighborhoods of G, :

Io(z) == Gm, In(z):={y= (4,1 €N)EGn:y =z fori<n}

for z € Gpm,n € P := N\ {0}. Denote by 0 = (0,7 € N) € G,, the nullelement
of Gm,I, := I,(0)(n € N). Denote by LP(Gm)(1 < p < 00) the usual
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Lebesgue spaces (||.|| the corresponding norms) on G,,. The so-called Hardy
space H(Gp) is defined as follows [7]. A function a € L®(Gp,) is called an
atom, if either @ = 1 or a has the following properties: suppa C I, ||a]loc <

< —1-, /a = 0, where I € T := {Io(z) : £ € Gm,n € N}, the set
p(1s) 7

of intervals on G,,. We say that the function f belongs to H(G,), if f can
(o
be represented as f = Y \ia;, where a;’s are atoms and for the coefficients
=0
(o]

Xi(i € N), 3|\l < ooistrue. It is known that H(Gm) is a Banach space

with respect to the norm
o
|fllar == inf ) |Ail,
i=0
where the infimum is taken all over decompositions
o0
f=Y"Xai € H(Gm).
i=0

Let My := 1, Mp4; := myM,, (n € N). Then each natural number n can
be uniquely expressed as

oo
n= Zn.-M.- (n.' € {0, 1,...,m; — 1}, 1€ N),
1=0
where only a finite number of n;’s differ from zero. Set
ra(z) := exp (21:%) (z € Gm,n € N,1:=v-1)
7

the generalized Rademacher functions,
Yn = Hr,'-"' (n €N)

the Vilenkin functions. The system (¥, : n € N) is called a Vilenkin system.
Each v, is a character of G,, and all the characters of G,, are of this form.
Define the m-adic addition:

k@®n:=Y (kj+nj(modm;))M; (k,n€N).
j=0
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Then, Yrgn = Yitn, ¥n(z + ¥) = ¥a(2)¥n(v), ¥n(-2) = ¥u(z), |¥al =
=1(k,n €N, z,y € G,,). For more on Vilenkin systems see e.g. [1, 11].

Then, we introduce the Vilenkin-like systems [3, 4]. Denote by A, the o-
algebra generated by the sets I,(z) (z € Gm) (n € N). Let functions af, ay, :
Gm — C (j,k,n € N) satisfy the following conditions:

(i) of is A; -measurable,

(i) lof|=af=af=af(0)=1,

e X .

(i) an =[] o} (7 := 3 niM;) (j,k,n € N).
=0 t=j

Set xn := Ynan (n € N). The system (xn,n € N) is called a Vilenkin-
like (or Ya) system. The system (xn,n € N) is orthonormal and complete in
LY(Gnm) [3).

We mention some examples.

1. If a}‘ = 1 for each k,j € N, then we have the “ordinary” Vilenkin
systems.

2. If mj =2 for all j € N and a;-‘j = (B;)™ , where

fi@ =exp (2m (S +..+555)) (€N, z€GCm),

then we have the character system of the group of 2 -adic integers (see e.g. [6]).
3. If

Xn(z) := exp (27rz (z

)Zz, ) (z € Gm,n €N),

; 1
ji= J+

then we have a Vilenkin-like system which is useful in the approximation theory
of limit periodic, almost even arithmetical functions. Namely, these kinds of
arithmetical functions can be extended to some Vilenkin groups, and the set

of the extensions of exp(2miayj) (a €Qno,1):= {5— :p<n,peN,ne€ P})
(j € P) functions equals to {xn : n € N}. For more on this system see [4, 5].
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2. Results, proofs

We define the subintervals on N in the following way (see e.g. [7, 8, 9]).
N :={I_,(n) : n,s € N},

where
I_,(n):={n"+k:N3k<M,}.

If N 38 =1_,(n), then set

By = Lua(n), B* = {I_y(n** 4+ iM,) 1§ € {0,1,..,m, — 1}},
(If n, =0, then 3* =0.)
g* =M, |B:=n"+M,-1 (nseN).

N is a tree-like set, that is for all 3,y € N oneof C v,y C B, BNy =10
holds. If 3 =I1_,(n) e N,y 2 B, 6 € vt (7,6 € N), then ¥ = I_,_j(n) for
some j € N and 6 = I_,_j(n**t/*+! 4 kM, ;) for some k € {0, ...,n,4; — 1}. If
n,4; =0, then v+ = @ in this case. Set fX(k) = f(k) := [ fxx,

k
S¥af =Seaif =) X(n)xn, S§F=Ssf = 5K,

n=0 kep

k
D1 (¥,2) = Dig1(9,2) := Y xa(¥)%n(2),
n=0

D;(yaz) = Dp(y,z) := ZDf(y,z)
kep

(kEN, BEN, y,2€Gm, Do=0, Sof =0, f€L'(Gm)).
It is known [5] that
M,, y—z€l,,

Dy.(y,z) = Dm,(y—2) = {
0, y—z ¢lI,.
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Moreover,

DX(y,z) = a,,(y)d,,(a:)D,‘f(_y, z) =

m;—1
= Xn(¥)Xn(2) (ZDM (y—2) E 3 —z))

_m,—n,

(y,z € G, n € P),

where 9 is the “ordinary” Vilenkin system. Set

1
Tof =15 |2 2 Sef|s TS = sup Tpf (BEN,f€L!(Gm).
2B sevt peN
We prove
Lemma 1.

sup  |Dp(z,z)|dz < (M, Ma)?,
MALIBIKM 44y
I (y\Ir41(y) p¥=M,, seN

moreover, if
z€ If(y) \ If+l(y)’ then |Dp(z,z)| < cM; M,

for all
M4 <|B| < May1, B* =M, BEN

(1,’ € If+l(y)) yE€ Gm: A,T,S € N) A Z T, S).

Lemma 2.

E Z |Ds(2,z)|dz < ¢

Gm\Ig(y) Iﬂ|>MQ ‘73ﬁ beyt
(.‘B € IQ(y): yE€ Gﬂh Q € N)

By Lemma 1 and 2 we prove the following
Theorem 3. ||Tf|l < cllfllz  (f € H(Gm))-
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k-1
That is operator T is of type (H,L). If we set opf := % ZS,,f (k €
n=0
€ P), o*f :=sup |o,f|, then {k} = Io(k) =: B,Tsf = orf gives |o*f| < Tf.
n
Thus, Theorem 3 gives
Corollary 4. ||lo* f|l; < cl|f|lx (f € H(Gm))-

That is operator o* is of type (H,L). Corollary 4 - with respect to the
Walsh system - is proved by Fujii [2]. If we omit the condition sup m, < oo
n

(which is supposed), then the situation changes. P. Simon proved [10] (with
respect to the “ordinary ” Vilenkin system) that in the case of sup m,, = oo ,
n

the operator o* is not of type (H, L).
On throughout this paper ¢ denotes a constant (depending only on sup m,,)
n
which may vary at different occurences.

Proof of Lemma 1. Let § € N, B8 = I_,(n), z € I,(y) \ Ir4+1(y) =:
=: J;(y) = Jr, s > 7, 5,7 € P. Then by the known form of the Dirichlet
kernels with respect to the Vilenkin-like systems [5] we have

Dp(z,2) =) (E k,-M,-) xk(2)xk(z)+

kep \j=0
m,—1 1 2
+ 2 M, ( Z rl(z - z)) xe(2)xe(z) =: Z +Z .
kep I=m, -k,
It is not difficult to see by (i) - (iii) that
1 my—1
E = Z Tf'(l - z)¢(z)z)l
k,=0

where ¢ does not depend on k,. Thus, Zl = 0. Consequently , after some

considerations
/ sup |Dg| <
MASIBIKM 44,y
J, pl=M,
c m;-1 m;—-1 s-1 . ; N p 3
+n’ _ . k;
<a 2 o MY ] o @E T @G- = 3
¢ adl k=0 j=r41

r<i<s rlils
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By the well-known Cauchy-Buniakovskii inequality we get

23:<ch M, 3
- M, \M,
2, 3

m.—l m;-1 s-1 R N k+ ) k
> o (Y] @ @) | <
"<i"=<°- :;:gr' rk<.-<° i=T41

CM mi-1 mg-1 mi-1 —1 ,

k’4n’
sm()(ZZEHa ()

=0 =0 k,l;=0 3=
T.<I<l l;‘QSA r‘<n.(= j=r+l

1
y ' y . y . . . 3
x&ﬁ-k’“' )(z)ag""" )(z)ag-“'" )(z)r;’-"(z - z)) .

Since

s—-1 X . . .
Z H a§k1+n )(Z)&§k1+n )(z)&§11+n )(Z)a§1’+n )(z)r;,--l,-(z —2)=my_y

Ze—15=T+1
-2

y . ] . 3] . ’] . o
Skt ] 0@ (@) @)l @) T (2 - ),
j=7+1

ST = o e I @m el e (e - 5) =

2,2 =741

-3 . . . .
Myt tea [I o O@E T (@)a ) (2)el N @) Y (2 - 2).

j=7+41
s, o [1 0 k=1
EE=Y0 if E£L)

and so on, then we get

cM? S (M, MyM, 3 A
——=——3 <c(M,M,)?
E- M, (M) {M, M, M,} S c(Mr Ma)
By the above it is easy to get |Dg(z,z)] < ¢cM,M, on the set z — z €

€ I, \ I 41 (B* = M,). Consequently, the case s < 7 is trivial. That is,
the proof of Lemma 1 is complete.
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Proof of Lemma 2. If Msy; > |B| > My, ¥ D B and 6§ € 41, then
May1 > 16| > Ma_y (AEN, B,7,8 € N). Thus, by Lemma 1

sup E Z |Ds(z,z)|dz <

Gm\Io(y) lﬁ|>MQ ‘7313 sevt

$=0 Map1>1612M 4
Ir(Y\I-41(y) si=M,

A M\ M,
2 o) tar)se
7=0 A=Q \s=71+1 A s=0 A

Remember that 6#¥ = M,, z—z € I, \ I,4; implies |Ds(z,z)| < cM,M,.
Lemma 2 is proved.

oo A
<SS / sup  |Ds(z,2)ldz | <
>

. Proof of Theorem 3. Let function a be an atom, a # 1 , suppa C

C I(y), [ a=0,|aljo < M for some k € N,y € Gm. If n < M, then
I(y)

a(n) = [ a(z)xn(z)dz = xn(y) [ a(z)=0. Consequently, n < M} implies
Ix(y) Ix(y)
Spa =0, that is
Ta = sup Tpa.
peN
1812 My,
Lemma 2 gives
Ta <

Gm\Ik(y)

< / la(z)] / sup Al z E |Ds(z,z)|dz | dz < ¢|la||s < c.

BEN
I(y) Gm\Ix(y) 1812Mx = 72P 8€7*

On the other hand,

[res [ s [ @ig T ¥ Do)l <

In(y) In(y) "P12Mx Li(y) v2P sev+
< / M sup / 8l z Z |Ds(z, z)|dzdz+

I(y) BIZMy [, (y)  Y2P EETH
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1
+ / M; sup / “—3! Z Z |Ds(z,z)|dzdz =: I' + I?,
L(y)  PREM G\ () 2P 0€rT

where d(f3) := max(n € N : M, < |B]). It is easy to get I' < c. Since by

Lemma 2
1
— <
wp [ EE Y Dol <

1B12My G o \Ty(gy(y) 2P 0ETY

< sup / sup |—[13_| E Z |Ds(2,z)|dz < e,

QENGM\]Q(y) |ﬂ;ixq 2B seqt

then we have I2 < c. That is, ||Ta||; < ¢ (case a = 1 is trivial). By standard
argument (see e.g. (7, 10]) this follows ||Tf|l < ¢||f||x for all f € H(Gy).
The proof of Theorem 3 is complete.
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