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CONVERGENCE CLASSES OF WALSH-FEJER
MEANS IN HOMOGENEOUS BANACH SPACES

S. Fridli (Budapest, Hungary)

Dedicated to Prof. Karl-Heinz Indlekofer on his 50th birthday

Abstract. The aim of this paper is to investigate the rate of convergence
of Walsh-Fejér means in homogeneous Banach spaces. That rate will be
prescribed by a sequence tending monotonically to zero. In this paper we
characterize those sequences which generate the same function classes. The
case of constant functions, i.e. the order of saturation can be derived from
our results.

1. Introduction

Let N denote the set of natural numbers, and P the set of positive integers.
Furthermore, let r; represent the k-th Rademacher function, i.e.

+1 if 0<z<1/2
ro(z) =
-1 if 1/2<z<1
periodic with 1, and
re(z) =ro(2*z)  (k€P).
Then the Walsh system W = {w,, : n € N} in the Paley enumeration can be
defined as

oo

o=l

k=0
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o0
where n = Y n;2¥ (ny = Oor 1, n € N) is the binary form of n.
k=0

Let L' denote the space of Lebesgue integrable functions defined on the
unit interval [0, 1] endowed with the usual norm denoted by || ||; . It was Fine
[3] who first observed that the Walsh system can be considered as the character
system of the dyadic group G. G is the set of sequences (zo,z1,...), for which

zy =0 or 1 (k € N). The group operation + is defined by

(z+ve=Ilzx—wl (2,y€G,kEN).

Taking the topology induced by the metrics
= |2k — v
/\(Z,y)=§-2,,T (z,y€G)

G becomes a compact topological group.

As we mentioned W is the character system of G. This is why the
structural properties of the dyadic group play an important role in the Walsh-
Fourier analysis. Taking the Lebesgue measure on [0, 1] and the normalized
Haar measure on G there is an almost one-to-one measure preserving map
between the unit interval and G:

p(z) = (zo,zl, . . ) (1.' € [0: 1))1

where
[o o]
z= Z 22" (k+1)
k=0

When there are two sequences of this form then we take the one which
terminates in 0’s.

Based on this correspondence most of the concepts, results and problems of
Walsh-Fourier analysis can be interpreted on both G and [0, 1]. For instance,
the dyadic addition on [0, 1) is defined by

zoy=p"'(p(z) + p(v)) (z,¥€(0,1)).

In order to introduce the concept of homogeneous Banach spaces we need to
define the dyadic translation and the Walsh polynomials. The collection of
functions of the form

n-1

5 o

k=0
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with real ap’s, i.e. the set of Walsh polynomials of order less than n € P is
denoted by P,,. We note that P2» (n € N) coincides with the set of functions,
which are constants on the dyadic intervals [k2~",(k+1)2"") (0<k < 2").
Let P denote the set of Walsh polynomials.

The operator of dyadic translation will be denoted by 7, and is defined as
follows

nf(z)=f(z®h) (hz€[0,1),f:[0,1)—R).

An X Banach space of functions defined on [0,1] is called a (dyadic) homo-
geneous Banach space if the following conditions hold

i) PcXclL!,
i) Ifll <Al (feX),
iii) (Imfll =IIfll (h€[0,1), f € X),

iv) P is dense in X.

X will always stand for a homogeneous Banach space in the sequel. We
note that the usual L? (1 < p < 00) spaces are homogeneous Banach spaces.
Moreover, the same holds for the dyadic Hardy and V MO spaces, and for every
Orlicz space.

The Dirichlet kernels of the Walsh system are defined by the sum
k-1
D, = ij (k € P).
=0

It is known (see e.g. [6]) that D2a (n € N) enjoys the property

2" if 0<z<27",
(1) Don(z) =

0 otherwise.

The Walsh-Fourier coefficients of a function f € L! are defined by

1

f(n)=/fwn,

0

and the Walsh-Fourier series of f is the series

Sf=Y_ f(n)wa.
n=0
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Furthermore, let the nth partial sum of the Walsh-Fourier series of f be
denoted by S, f, i.e.

n-1
Snf=)_ f(k)ywe (n€P).
k=0

It follows from (1) that the sequence of the partial sums of the form S2» f plays
a special role. Its difference sequence will be denoted by A,f, ie. Anf =
= Sont1 f—Son f (f € Ll, ne N)

It is known (see e.g. [1], [7]) that

(2) If *gllix <Wflillgllx  (feL' g€ X),

where * stands for dyadic convolution, i.e.

(f+9)(z) = / feotye)dt (fgeL).
0

As a consequence of (1) and (2) we have

) llAefllx <|Ifllx and [ISxfllx <IIfllx (k€N feX).

By the operator of the dyadic translation one can introduce the concept of
dyadic modulus of continuity

wx(6,f) = 2P f—mfllx (feX).

Watari [9] proved that the rate of convergence of Si» f and the rate at which
wx (27", f) tends to zero can be controlled by each other. Namely, the following
relation holds true

(4) %"’x(?'",f)sllf-—sznfllxwa(?’"’f) (neN, feX).

There is a similar relation with respect to the operator of best approximation,
1.e.

() I~ Seflix < En(fX) < - Snfllx  (nEN, fEX),

where
En(f,X)= minIf -plx  (n€P, feX).
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In the proof of our results we will need the concept of dyadic derivative.
It is known that the fact that the functions of the complex trigonometric
system are eigenfunctions of the operator of the classical derivative has several
consequences. The Walsh system consists of piecewiese constant functions
therefore the classical differentiation is not useful for it. That is why Butzer
and Wagner [2] introduced the concept of dyadic differentiation. Set

n-1
daf =Y %Y f-maaf) (n€P, feEX).
k=0

A function f € X is said to be (strongly) dyadically differentiable if there
exists g € X such that
lim lg - dofllx = 0.

Then g is called the dyadic derivative of f and denoted by df. It is easy to
check by the definition of the Walsh functions that

dwy = kwi (k €N).

The Bernstein and Jackson inequalities with respect to the trigonometric
polynomials and the classical derivative have their dyadic analogues ([8]):

(6) lldplix < 2nllpllx (P €Pa,n€P),

and if f € X is dyadically differentiable then
(7 En(f,X) < Cxn7'||dflIx  (n€P).

Throughout this paper Cx will denote a positive constant depending only
on the homogeneous Banach space X, not necessarily the same in different
occurences.

2. Results
The Walsh-Fejér means of an f € X are defined as

owf=1Y 5 (neP).

k=1
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It is known that (o, f) converges to f in the norm of X. It is also well-known
(see e.g. [5] or [7]) that the order of saturation of the Walsh-Fejér means is
o(1/n). Namely, similarly to the trigonometric case, ||f — onf||x = o(1/n)
(n — oo0) implies that f is equivalent to a constant function. In other words
onf cannot converge to fast for non-constant functions. On the other side,
there exists a non-constant function f € X for which ||f — o, f||x = O(1/n)
(n — o0) holds.

We will raise this problem in a more general setting. Let (ax) \, 0 be
given and denote F§ the set of functions in the homogeneous Banach space
X for which (0,f) tends to f in order (ay), i.e.

Fx={f€X :|If - onfllx =O(an) n— oo}

The following problem will be investigated: What is the neccessary and
sufficient condition for

FRCFg (@) \0, (8a) \0).

The answer is given in Theorem 1-2 and in their consequences. In order to
formalize our results let us introduce the following notation. For any (a) \, 0
set

. _ 1.
a, = n:rzlf"‘kak (neP).

Obviously, (a;) \\ 0, and aj < ai (k€ P).
Theorem 1. Let f € X and a = (ar) \\ 0. Then

Fg§ =F§ .

Remark. This result shows that concerning the rate of convergence of
Walsh-Fejér means it is enough to take such (ax) N\, 0 sequences for which
(k ax) is monotonically increasing. On the basis of Theorem 1 we can partially
answer our question. Namely, it follows from Theorem I that if

a;=0(B;)  ((@n), (Ba) \ O, n — 00)

then
Fg C Fy.

The next theorem shows that this condition is not only sufficient but necessary
as well.

Theorem 2. Let (ai) \, 0 and (B) \\ 0 for which
ap #0(8;)  (n—00).
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Then
F$ ¢ F.

The combination of Theorem 1 and Theorem 2 yields
Corollary 1. Let (ag), (8t) \, 0. Then

Fg C F§ ifandonlyif o} =O(8}) (n — o).

Corollary 2. Clearly, the condition ||f — onfllx = 0 (n € P)
characterizes the constant functions, i.e. if fx = 0 (k € N) then F 5 is
the set of the constant functions. Consequently, we have by Corollary 1 that
|f —onfllx = O(ax) (n € P) implies that f is constant if and only if a} =0
(k € P), that is llcreli; kar = 0. In particular, this holds if ax = o(1/k). We note

that the problem investigated in this paper was partly solved by the author in
[4] for the special case X = L? (1 < p < o).

3. Proofs

To the proof of Theorem 1 we need a lemma. It shows that in connec-
tion with the rate of convergence of Walsh-Fejér means we can restrict our
investigation onto the indices of the form 2" (n € N).

Lemma.Let f € X. Then

[If = oanflix < Cx|lf — o2nsr fllx

and
If — o2ngrflix < Cx|If —o2nfllx (k,neN,0<k<27).

Proof. It is easy to see that from the definition of the Fejér means we
have by (3)

1f = onns fllx 2 1Sn(f = ozmss lx = 3l1S0n(f = 020 Dllx 2

> 2(1f = 022 fllx = 18nfllx = If = Szess fllx)
(f€ X,n€eN).
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Making use of (5) and the Bernstein- and Jackson-type inequalities ((6), (7))
for the Walsh-polynomial A, f (f € X, n € N) we obtain

1
(8) =27 ¥l dAcfllx < ||Arfllx < Cx27%||dAkfl|x -
4

It is clear that

2"ty

Anf—omnf)= Y semfR)us=2""100f  (fEX)
k=2»

Hence it follows from (8) and (3) that
lAnfllx < CxlIf — o2nsr flix -
On the other hand

||f - Szn+1f||x = ||(f - 0’2n+1f) — Sgatr (f - 02~+lf)“X <

9
®) <20f = ozmni fllx

holds obviously. The combination of these inequalities leads to the desired
inequality:
lf — o2n+1 flix 2 Cx||lf — o2~ flIx -

To the proof of the second inequality of Lemma we will use a decomposition

¢
of the Walsh-Fejér kernels K, =1 3~ D; (¢ € P) due to Fine([3]):
j=1

(2" + k)Kanyr = 2"Kon + kDyn + wonkK;  (k,n€eN,0<k<27).
Thus
If — o2 flix < NIf — o2nflix + [If — S2~fllx + |Anf * wan Ki||x -
Since ||Kn||1 <2 ([10]) we have by (2) that
lAnf * wenKillx < |lwzsKill1llAnfllx < 2[1f — S2=fllx -
Consequently, (9) implies
If = oansefllx <Cx||f —o2nfllx (k,n€N,0<k<2%).

Lemma is proved.
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In the rest of the paper we will frequently refer to the following conse-
quences of Lemma. The first one follows immediately from it.

Consequence 1. Let f € X and (ag) \\0. Then
Nf - orfllx = O(er)  (k— o0)

if and only if
lf — o2 fllx = O(azx)  (k— o00).

The second one shows that there is a strong connection between the rate
of convergence of Walsh-Fejér means and the growth order of the dyadic
derivative.

Consequence 2. Let f € X and (ax) \\ 0. Then

(10) If —oxfllx = Oex)  (k— o0)
if and only if

(11) [|dS2~ fllx = O(2"az+) and Ej~(f, X) = O(azn) (n — 00).

Proof. Since
2" Kan = 2" Dyn — dD3n (n € N),
by (4) and (5) we have

ldS2n fllx < 2°||f — 02n fllx +2°||f = San flIx < 3-2%||f — o2n flIx
and
2M|f — o2n fllx < ||dSenfllx +2-2"Eon(f, X).

Then by Consequence 1 we can conclude that (11) implies (10).

The proof can be completed by observing that E2«(f, X) = O(az») (n —
oo) follows immediately from (10).

By means of Lemma and its consequences we can prove Theorem 1.

Proof of Theorem 1. On the basis of Consequence 1 it is sufficient to
prove that if ||f — o2~ f||[x = O (a2») then

1 .
If = owfllx =0 (55 juf an)  (n—o0).
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Let us suppose that ||f — o2~ f||x = O(az~) (n — 00). Then
(12) ldS2n flix = O(2"azs)  (n — o0)
follows from Consequence 2. It is easy to see by (3) that ||dSza f||x (n € N) is

monotonically increasing by n — oo. Therefore, the relation in (12) can only
be true if

(13) ldS2~fllx = O (ga 2"02&) (n — 00).

Let ||f — Sz fllx = B2~ (n € N). Obviously 3~ = O(azs) (n — o0).
If (2"B2») is monotonically. increasing from a certain index then the statement
follows immediately from Consequence 2.

If this is not the case then let us introduce the sequence of indices (£;) as
follows

=1, LGo=min{j>b_1: 2Py <P 81} (kEP).
Observe that by (7) we have

14520 fllx > ldAs-1fllx > Cx2* " |Ag-1£lix >
> Cx 2% (Bya-1 — Bye.) > Cx 2 Bpes-n (K €N).

Hence it follows from (13) that

24-18.,,-1 < Cx inf 2"azs (k€N).
ﬂzlg

Let
Nj = min{k €N : £ > j} (JEN).-
Then .
2B < 2™Pm < Cx2Mazm  (j < m < Ly;)
and .
2 By < 2‘""-1,32:",.-1 < Cx inf 2"a3~ (.7 GN)'
nZle
Consequently,

1. n .
B2; < Cx 53.352 az» (JEN).

The proof can be completed by Consequence 2.
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Proof of Theorem 2. It follows from the assumptions of the theorem
that a3. # O(f3.) (n — 00). Let (n;) be a sequence of indices for which

* 1 - - ) " .
a2nj+1 S 502n,- and azu,- Z 2Jﬂ2nj (] € N)

00
hold. Let us define the coefficients a; (k € N) of the series ) aj(Dyn;+1 —
j=0
Dy»;) by induction. It is clear that Fo(z) = z||d(Dgno+r — D2no)||x (z > 0) is
a continuous real-real function, F(0) =0 and lim Fp(z) = oo . Consequently,
Z-=00

there exists ag > 0 such that
Fo(ao) = 2"005..0 .

After having determined the coefficients a; > 0 (j =0,...,k) satisfying

||d(zt:a,~(uzn,+l — Dyny)) ||x =2™am,  (£=0,...,k),

j=0

let

k
Frs1(2) = [2(Dysagits = Damasn) + 3 0j(Dpnsis = Dpms)llx - (220).
=0

Similarly to Fp also Fi4; is a continuous real-real function, and

Fr41(0) = 2"* a3, and zlilglo Fiyi1(z) = 0.

By definition (n a;},) is monotonically increasing, therefore there exists ax4; >
0, for which
Fiy1(aks1) = M+ agmpn

holds. Then the sequence of coefficients (ax) is defined. It follows from the
construction and from (3) that ||agd(Dyn.+1 — Dami)||x < 2™*ajs, . Hence we
have by (3) and (8)

lak(Dani+r — Dami)||x < Cxagn, -

Recall that aj., 41 < (1/2)a3s, by the definition of (n;). Therefore, the series
00

a;(D.,n;+1 — Dynj) converges in the norm of X. Let its sum be denoted by
2, @i\ Fori
J:
f € X. By the construction we have

(ld(Somets H)llx = 27 agm, <2™Hajn 4 (1< J < gy — i),
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ie.
(14) d(S2: f)llx <P ey (5 EN).
Similarly,
oo oo
Epmts(£,X)<Cx Y Anflix <Cx Y ajnc <
(15) t=k+1 t=k+1

SCxaymp <Cxajases  (1<j<mepr—m).

By Consequence 2 we have that (14) and (15) together imply f € Fg" . On
the other hand, it follows from the definition of (n;) and from ||d(Sz~; f)||x =
2%aja; (j €N) that

ld(Szm; Hllx > 22™ B3, # 02 F3n;) (4 — o).

Consequently, again by Consequence 2 we obtain f ¢ Fﬁ. .
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