ON INTEGER VALUED MULTIPLICATIVE AND ADDITIVE ARITHMETICAL FUNCTIONS

J. Fehér (Pécs, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on the occasion of awarding to him the degree "Doctor honoris causa"

1. Introduction

Let \mathcal{M} and \mathcal{M}^* denote the family of all integer valued multiplicative and completely multiplicative functions, respectively. Furthermore let \mathcal{A} be the set of all integer valued additive functions.

In 1966 M.V. Subbarao [5] proved the following: If $f \in \mathcal{M}$ and we have

(1)
$$f(n+m) \equiv f(m) \pmod{n}$$

for each couple (n, m) then necessarily

$$(2) f(n) = n^{\alpha} (\forall n \in \mathbb{N})$$

for a suitable integer $\alpha \geq 0$.

In [3] A. Iványi established that if $f \in \mathcal{M}^*$ and (1) holds for some fixed m for all values of n then f is also of the form (2). This result was sharpened by B.M. Phong and the author [2] by showing that the relations $f \in \mathcal{M}$, $f(m) \neq 0$ and (1) for some m and for all n imply (2), too. Finally B.M. Phong and I. Joó [1] proved the following: If $f \in \mathcal{M}$, $A \geq 1$, $B \geq 1$ and $C \neq 0$ are fixed integers and for all $n \in \mathbb{N}$ we have

$$(3) f(An+B) \equiv C \pmod{n}$$

then there exists a real Dirichlet character $\chi_A \pmod{A}$ such that

$$f(n) = \chi(n)n^{\alpha}$$

for all $n \in \mathbb{N}$ with (n, A) = 1 where $\alpha \ge 0$ is a suitable integer.

J. Fehér

40

The following question is raised naturally: Let us fix $T \in \mathbb{Z}$ and $P(x) \in \mathbb{Z}[x]$ with $deg\ P \geq 1$ and P(n) > 0 (n = 1, 2, ...). Assume $f \in \mathcal{M}$ or alternatively $f \in \mathcal{A}$. What can be stated about f if

(5)
$$f(P(n)) \equiv T \pmod{n} \quad (n = 1, 2, \ldots)?$$

In the present paper we are going to prove the following

Theorem 1. Let $f \in \mathcal{M}$ and suppose

(6)
$$f(n^2+1) \equiv 1 \pmod{n^2} \quad (\forall n \in \mathbb{N}).$$

Then $f(2) = 2^{\nu}$, $f(q^{\alpha}) = q^{\alpha\mu(q)}$ whenever q is a prime with $q \equiv 1 \pmod{4}$.

Define
$$H := \left\{ 2^{\epsilon} \prod_{i} q_{i}^{\alpha_{i}} \mid \epsilon = 0, 1; \quad q_{i} \equiv 1 \pmod{4} \quad primes \right\}$$
.

Theorem 2. Let $g \in A$ and assume

(7)
$$g(n^2+1) \equiv 0 \pmod{n} \quad (\forall n \in \mathbb{N}).$$

Then g is completely additive on the set H in the sense that $a, b \in H$ implies always g(ab) = g(a) + g(b).

2. Lemmas

Lemma 1. Let $q \equiv 1 \pmod{4}$ be a prime or let q = 2. Suppose $P \not\equiv 0 \pmod{q}$ is an integer and let $\alpha = 1$ if q = 2. Then there exists a couple $(x, u) \in \mathbb{N}^2$ such that

(8)
$$q^{\alpha}u = x^2P^2 + 1 \quad \text{and} \quad u \not\equiv 0 \pmod{q}.$$

Proof. If q = 2 then any odd x suits our requirements. Let $q \equiv 1 \pmod{4}$ be a prime. Since $P \not\equiv 0 \pmod{q}$, we can choose $(v, T) \in \mathbb{N}^2$ such that

(9)
$$q^{\alpha}v = TP^2 + 1$$
 and $(v, T) = 1$.

Since (9) implies $\left(\frac{T}{q}\right) = 1$, there exists $x \in \mathbb{N}$ with $x^2 \equiv T \pmod{q^{\alpha+1}}$. Let $k = \frac{x^2 - T}{q^{\alpha}}$, $u = v + kP^2$. Then (u, q) = (v, q) = 1 and $q^{\alpha}u = x^2P^2 + 1$.

Lemma 2. Let $q \equiv 1 \pmod{4}$ be a prime, $uq^{\alpha} = A^2 + 1 \pmod{6}$, $u \not\equiv 0 \pmod{q}$. Then the equation

$$(10) x^2 - (A^2 + 1)y^2 = A^2$$

admits a solution such that A|x, A|y, $y^2 + 1 = vq$, $v \not\equiv 0 \pmod{q}$ and (u, v) = 1.

Proof. Let $uq^{\alpha} = A^2 + 1$ (= d), $u \not\equiv 0 \pmod{q}$. Then the Pell equation

(11)
$$x^2 - (A^2 + 1)y^2 = 1$$

has a solution (x_0, y_0) satisfying

(12)
$$x_0 \not\equiv 0 \pmod{q}, \quad y_0 \not\equiv 0 \pmod{q} \text{ and } u|y_0.$$

It is well-known that the couples (x_n, y_n) defined by

(13)
$$x_n = \sum_{i=0}^{\infty} \binom{n}{2i} d^i y_0^{2i} x_0^{n-2i}$$

$$y_n = \sum_{i=0}^{\infty} \binom{n}{2i+1} d^i y_0^{2i+1} x_0^{n-2i-1} = n y_0 x_0^{n-1} + B_n d$$

are solutions of (11). It is clear that (X_n, Y_n) is a solution of (10) for $X_n = Ax_n$, $Y_n = Ay_n$. From (13) it follows

$$Y_n^2 + 1 = (Any_0x_0^{n-1})^2 + 2y_0x_0^{n-1}A^2B_ndn + C_nq^2 + 1.$$

Let $n = s(q^2 - 1) + 1$. Then $d = uq^{\alpha}$ and, by Fermat's theorem,

(14)
$$Y_n^2 + 1 \equiv (Ay_0)^2 (s-1)^2 + 1 \pmod{q}.$$

The case $\alpha > 1$

If $\alpha > 1$ then we have also (14) (mod q^2). Choose a positive integer such that

(15)
$$(Ay_0)^2(s_0-1)^2+1 \quad \begin{cases} \equiv 0 \pmod{q}, \\ \not\equiv 0 \pmod{q^2}. \end{cases}$$

Then (X_n, Y_n) suits our requirements for $n = s_0(q^2 - 1) + 1$.

The case $\alpha = 1$

Suppose that s_0 satisfies (15) and let $s = s_0 + mq$. Then for $n = n(m) = (s_0 + mq)(q^2 - 1) + 1$ we have

$$Y_{n(m)}^{2} + 1 = G_{m}q \equiv (Ay_{0})^{2}(s_{0} - 1 + mq)^{2}x_{0}^{2(s_{0} + mq)(q^{2} - 1)} + 1 +$$

$$+2A_{y_{0}}^{2}(-(s_{0} - 1) - mq)x_{0}^{(s_{0} + mq)(q^{2} - 1)}uqB_{n} \quad (\text{mod } q^{2}).$$

According to the Euler-Fermat theorem, here we have

$$x_0^{2s_0(q+1)(q-1)} = Lq + 1,$$

$$x_0^{2m(q+1)q(q-1)} = L_m q^2 + 1,$$

$$x_0^{s_0(q+1)(q-1)} = Dq + 1,$$

$$x_0^{m(q+1)q(q-1)} = D_m q^2 + 1$$

and hence

$$G_m q \equiv Mq + (Ay_0)^2 (s_0 - 1)Lq + 2(Ay_0)^2 (s_0 - 1)mq -$$

$$-2Ay_0 (Dq + 1)[(s_0 - 1) + mq]uB_n q \pmod{q^2}.$$

On the other hand

$$B_n \equiv \binom{n}{3} y_0^3 x_0^{n-3} \equiv -\frac{s_0(s_0^2 - 1)}{6} y_0^3 x_0^{q-3} \pmod{q}$$

and hence

$$G_m \equiv T \cdot m + E \pmod{q}$$
 where $T \equiv 2(Ay_0)^2(s_0 - 1) \not\equiv 0 \pmod{q}$.

Thus we can achieve $q|G_m$. Notice that (X_n, Y_n) suits our requirements if $n = (s_0 + mq)(q^2 - 1) + 1$ and $G_m \not\equiv 0 \pmod{q}$.

Lemma 3. Every prime number q = 4k + 1 admits a representation $q = \prod (4x_i^2 + 1)^{l_i}$ $(x_i, l_i \in \mathbb{Z})$.

Proof. (See I. Kátai [4])

3. Proof of Theorem 1

- (a) Let q=2 or $q\equiv 1\pmod 4$ and suppose $\alpha=1$ if q=2. Furthermore let p be a prime with $p|f(q^{\alpha})$. We show that q=p. Assume $q\neq p$. Then by Lemma 1 the condition $uq^{\alpha}=x^2p^2+1$, $u\not\equiv 0\pmod q$ can be satisfied. Hence, by (6), it follows $f(u)f(q^{\alpha})\equiv 1\pmod p$ which is impossible because $p|f(q^{\alpha})$.
- (b) Let $q \equiv 1 \pmod{4}$ be a prime, $\alpha \geq 1$ an integer, $P \not\equiv 0 \pmod{q}$, $uq^{\alpha} = t^2P^2 + 1 = A^2 + 1$, $u \not\equiv 0 \pmod{q}$. Let (X,Y) be a solution of the equation $x^2 (A^2 + 1)y^2 = A^2$ satisfying the conditions of Lemma 2. Then

$$l^{2}P^{2} + 1 = x^{2} + 1 = (A^{2} + 1)(y^{2} + 1) = uq^{\alpha}v,$$
$$(u, q) = (v, q) = (u, v) = 1$$

and therefore, by (6),

(16)
$$f(u)f(v)f(q^{\alpha+1}) \equiv 1 \pmod{P}.$$

On the other hand, since $uq^{\alpha} = A^2 + 1 = t^2P^2 + 1$ and (u, q) = 1, (6) implies

(17)
$$f(u)f(q^{\alpha}) \equiv 1 \pmod{P},$$

and since $vq = y^2 + 1 = h^2 P^2 + 1$ and (v, q) = 1, by (6),

(18)
$$f(v)f(q) \equiv 1 \pmod{P}.$$

From (16), (17) and (18) we get

(19)
$$f(u)f(v)f(q^{\alpha+1}) \equiv f(u)f(v)f(q^{\alpha})f(q) \pmod{P}.$$

Since (P, u) = (P, v) = 1 by (a) we have (P, f(u)) = (P, f(v)) = 1. Thus (19) entails

(20)
$$f(q^{\alpha+1}) \equiv f(q^{\alpha})f(q) \pmod{P}.$$

Since P can be arbitrarily large, from (20) we obtain

(21)
$$f(q^{\alpha+1}) = f(q^{\alpha})f(q) \qquad (\alpha = 1, 2, ...).$$

Comparing (a) and (21) we deduce $|f(q^{\alpha})| = q^{\alpha\mu(q)}$.

J. Fehér

(c) It remains to check that f(q) > 0. Let p, q be primes of the form 4k + 1 and assume $f(p) = -p^{\nu}$. By Lemma 3 we have $pq^2 \prod_i (4x_i^2 + 1) = \prod_j (4y_j^2 + 1)$.

Hence (6) and the complete multiplicativity imply

$$(22) -p^{\nu}q^{2\mu} \equiv 1 \pmod{4}.$$

On the other hand

$$(23) p^{\nu}q^{2\mu} \equiv 1 \pmod{4}.$$

Comparing (22) and (23) we see that

$$p^{|\mu-\nu|}+1\equiv 0 \pmod{4},$$

which is impossible since $p \equiv 1 \pmod{4}$. Finally $2 \cdot 5^2 = 7^2 + 1$ and the assumption $f(2) = -2^{\nu}$ imply similarly

$$2^{|\nu-\mu|}+1\equiv 0\pmod{7}$$

which is also impossible.

4. Proof of Theorem 2

Let $q \equiv 1 \pmod{4}$ be a prime, $\alpha \geq 1$, $P \not\equiv 0 \pmod{q}$. Then, with the notations of the proof of Theorem 1, from (7) we obtain

(24)
$$g(u) + g(q^{\alpha}) \equiv 0 \pmod{P},$$

(25)
$$g(v) + g(q) \equiv 0 \pmod{P},$$

(26)
$$g(u) + g(v) + g(q^{\alpha+1}) \equiv 0 \pmod{P}.$$

The proof of (24), (25) and (26) is analogous to our previous considerations. Hence we get finally

$$g(q^{\alpha+1}) = g(q^{\alpha}) + g(q).$$

References

- [1] Phong B.M. and Joó I., Arithmetical functions with congruence properties, Annales Univ. Sci. Bud., Sect. Math., 35 (1992), 151-155.
- [2] Phong B.M. and Fehér J., Note on multiplicative functions satisfying a congruence property, Annales Univ. Sci. Bud., Sect. Math., 33 (1990), 261-265.
- [3] Iványi A., On multiplicative functions with congruence property, Annales Univ. Sci. Bud., Sect. Math., 15 (1972), 133-137.
- [4] Kátai I., Some problems in number theory, Studia Sci. Math. Hung., 16 (1981), 289-295.
- [5] Subbarao M.V., Arithmetical functions satisfying a congruence property, Canad. Math. Bull., 9 (1966), 143-146.

J. Fehér

Department of Mathematics Janus Pannonius University Ifjúság u. 6. H-7624 Pécs, Hungary