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1. Introduction

Let M and M* denote the family of all integer valued multiplicative and
completely multiplicative functions, respectively. Furthermore let A be the set
of all integer valued additive functions.

In 1966 M.V. Subbarao [5] proved the following: If f € M and we have
(1) f(n+m)=f(m) (modn)
for each couple (n, m) then necessarily
(2) f(r)=n® (Vn€N)

for a suitable integer a > 0.

In [3] A. Ivanyi established that if f € M* and (1) holds for some fixed m
for all values of n then f is also of the form (2). This result was sharpened by
B.M. Phong and the author [2] by showing that the relations f € M, f(m) # 0
and (1) for some m and for all n imply (2), too. Finally B.M. Phong and I. Joé
[1] proved the following: If f € M, A> 1, B> 1 and C # 0 are fixed integers
and for all n € N we have

(3) f(An+ B)=C (mod n)
then there exists a real Dirichlet character x4 (mod A) such that
(4) f(n) = x(n)n®

for all n € N with (n, A) = 1 where a > 0 is a suitable integer.
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The following question is raised naturally: Let us fix T' € Z and P(z) €
€ Z[z] with deg P > 1 and P(n) > 0 (n = 1,2,...). Assume f € M or
alternatively f € A. What can be stated about f if
(5) f(P(n)) =T (modn) (n=1,2,...)7

In the present paper we are going to prove the following

Theorem 1. Let f € M and suppose

(6) f(n?+1)=1  (modn?) (Yn€N).

Then f(2) = 2Y, f(¢%) = ¢®#(9) whenever q is a prime withg=1  (mod 4).
Define H := {2‘ [Te 1e=0,1; g=1 (mod4) primes} .
Theorem 2. Let g € A and assume

) g(n?+1)=0 (mod n) (Vn €N).

Then g is completely additive on the set H in the sense that a,b € H implies

always g(ab) = g(a) + g(b).

2. Lemmas

Lemma 1. Let g =1 (mod 4) be a prime or let ¢ = 2. Suppose P £ 0
(mod q) is an integer and let « = 1 if ¢ = 2. Then there ezists a couple
(z,u) € N? such that

(8) ¢“u=2z?P?+1 and u#0 (modgq).

Proof. If ¢ = 2 then any odd z suits our requirements. Let ¢ =1 (mod 4)
be a prime. Since P # 0 (mod ¢), we can choose (v, T) € N2 such that

9) ¢“v=TP?+1 and (v,T)=1.

Since (9) implies (%) = 1, there exists £ € N with z2 = T (mod ¢®+!). Let
22-T

a

k=

, u=v+ kP2 Then (u,q) = (v,¢) =1 and ¢°u = z2P? 4 1.
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Lemma 2. Let ¢ = 1 (mod 4) be a prime, ug® = A2 +1 (a € N),
u#0 (mod q). Then the equation

(10) 22— (A% +1)y? = A?

admits a solution such that A|z, Aly, y>+1 = vq, v # 0 (mod q) and (u,v) = 1.
Proof. Let ug® = A2+ 1 (=d), u # 0 (mod g). Then the Pell equation

(11) 22 - (A2+ 1)y =1
has a solution (z, yo) satisfying
(12) 2o Z0 (modgq), yo#Z0 (modg) and ulyo.

It is well-known that the couples (z,,yn) defined by

oo

n 6,28, n—21
19 ==Y (g)dke

1=0

o0
Yo = Z n diy2i+lzn—2i—l = nyozn-l +B d
n pord 21+1 0 0 0 n

are solutions of (11). It is clear that (X,, Y,) is a solution of (10) for X, = Az,
Y, = Ayn. From (13) it follows

Y2 +1 = (Anyozl )% + 2yozl "' A’Badn + Cag® + 1.
Let n = s(¢?> — 1) + 1. Then d = ug” and, by Fermat’s theorem,
(14) Y2 +1=(Aw)*(s—1)? +1 (mod g).
The case @ > 1

If @ > 1 then we have also (14) (mod ¢?). Choose a positive integer such that
= 0 (modg),

(15) (Ayo)?(s0 — 1)* +1
# 0 (mod ¢?).

Then (X,,Y,) suits our requirements for n = so(q? — 1) + 1.
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The case a =1

Suppose that so satisfies (15) and let s = so + mq. Then for n = n(m) =
= (so + mq)(¢% — 1) + 1 we have

Y2my + 1= Gma = (Ay0)*(s0 — 1+ mq)222Co+m00~1 4 14

n
2-
+2A3°(—(30 - 1) - mq)zg‘o-l-mq)(q l)qun (mod qz)'
According to the Euler-Fermat theorem, here we have

zg'o(ﬁ'l)(‘l-l) =Lg+1,

zg'n(ﬁl)q(q—l) — Lqu +1,
zao(ﬂ"’l)(ﬂ‘l) =Dgq+1,
zan(ﬁl)q(q—l) = Dmg®+1
and hence
Gmg=Mqg+ (Ayo)z(so -1Lg+ 2(Ayo)2(so - 1)mg—
—2Ayo(Dgq + 1)[(s0 — 1) + mq]uBngq (mod qz).

On the other hand

n _ so(s2 -1 _
Bo= ()b = -2t (mod )

and hence
Gmn=T -m+E (modgq) where T =2(Ay)*(so—1)#0 (mod gq).

Thus we can achieve ¢|G,,. Notice that (X,,Y,) suits our requirements if
n=(so+mq)(¢> —1)+ 1 and G, # 0 (mod g).
Lemma 3. Every prime number ¢ = 4k + 1 admits a representation ¢ =
= H(4z? + 1)1‘ (25,1, € Z).
1]

Proof. (See I. Kitai [4])
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3. Proof of Theorem 1

(a) Let ¢ = 2 or ¢ = 1 (mod 4) and suppose a = 1 if ¢ = 2. Furthermore
let p be a prime with p|f(¢®). We show that ¢ = p. Assume ¢ # p. Then by
Lemma 1 the condition ug® = z2p?+1, u £ 0 (mod g) can be satisfied. Hence,
by (6), it follows f(u)f(¢*) = 1 (mod p) which is impossible because p|f(q%).

(b) Let ¢ = 1 (mod 4) be a prime, @ > 1 an integer, P # 0 (mod g),
ug® = t?2P2 +1 = A2+ 1, u # 0 (mod q). Let (X,Y) be a solution of the
equation z2 — (A% + 1)y? = A? satisfying the conditions of Lemma 2. Then

PP 41=224+1=(A2+1)(¥* +1) = ug®v,

(@) =(v,9)=(yv)=1
and therefore, by (6),

(16) f(Wf()f(g**')=1  (mod P).

On the other hand, since ug® = A2 + 1 = t?P? + 1 and (u,g) = 1, (6) implies
(17) f(w)f(@®)=1  (mod P),

and since vg = y> + 1 = h2P2 +1 and (v,q) =1, by (6),

(18) f()f(@d =1  (mod P).

From (16), (17) and (18) we get

(19) f(Wf(0)f(g**!) = f(w)f(v)f(¢°)f(g)  (mod P).

Since (P,u) = (P,v) = 1 by (a) we have (P, f(u)) = (P, f(v)) = 1. Thus (19)
entails

(20) f(a®*') = f(4*)f(¢) (mod P).

Since P can be arbitrarily large, from (20) we obtain

(21) f@®*) = f@)fle) (e=12,..).

Comparing (a) and (21) we deduce |f(¢%)| = ¢*#(%).
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(c) It remains to check that f(g) > 0. Let p, ¢ be primes of the form 4k + 1
and assume f(p) = —p*. By Lemma 3 we have pg® [[(4z? + 1) = [](4y? + 1).
i J
Hence (6) and the complete multiplicativity imply

(22) -p’¢** =1 (mod 4).
On the other hand
(23) p’¢®* =1 (mod4).
Comparing (22) and (23) we see that

PP l+1=0  (mod4),

which is impossible since p = 1 (mod 4). Finally 2-52 = 72 + 1 and the
assumption f(2) = —2” imply similarly

=My 1=0 (mod 7)

which is also impossible.
4. Proof of Theorem 2

Let ¢ = 1 (mod 4) be a prime, a > 1, P # 0 (mod ¢). Then, with the
notations of the proof of Theorem 1, from (7) we obtain

(24) g(u)+9(¢*)=0  (mod P),
(25) 9(v)+9(¢g) =0  (mod P),
(26) 9(u)+g(v) +9(¢°*') =0  (mod P).

The proof of (24), (25) and (26) is analogous to our previous considerations.
Hence we get finally

9(¢®*") = 9(¢*) + 9(q)-
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