Annales Univ. Sci. Budapest., Sect. Comp. 14 (1994) 23-31

ON A FUNCTIONAL EQUATION CONNECTED
WITH AN IDENTITY OF RAMANUJAN

Z. Daré6czy (Debrecen, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on his fiftieth birthday

1. Introduction

Let A = (Z Z) € Mat(2,R) and let f : R — R be a function. The

Ramanujan difference R;(A) of A generated by f is defined by
(RD) Ry(A):==fla+b+c)+ f(b+c+d)+ f(a—d)-

—[fla+b+d)+ fla+c+d)+ f(b—c)].

It is obvious that Ry : Mat(2,R) — R.
The remarkable identity of Ramanujan ([4], [2], [3]) is the following: If
fe(z) ;= z* (z € R; k € N), then

(RI) 64Ry,(A)Ry,o(A) = 45R],(4)

is true for any A € Mat(2, R) with det (4) = 0.

In this paper, we are investigating the following problem: Let Mat*(2, R)
denote the set of all matrices A € Mat(2, R) for which det (4) = 0. We denote
by S(R) the set of all functions f : R — R for which the equation

(1) Ry(a) =0

fulfils for all A € Mat*(2,R). We are interested in the characterization of the
set S(R).
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2. Notation

Let R, be the set of all positive reals, and let R, be the set of all
nonnegative reals. We denote by P(R;) the set of all functions g : Ry — R for
which the equation

(2) 29(u? + uv + v?) = g(u?) + 9(v*) + 9((u + v)*)

is true for all u,v € R. Let Q(R,) denote the set of all functions g : Ry — R
for which the equation

3 2 (%z + %y) +9(z) =2 (%z + %y) +9(y)

fulfils for all z,y € Rj.
3. Results on the set S(R)

Theorem 1. If f € S(R), then f is an even function (i.e. f(~t) = f(t)
for allt € R), and the function g :I_Ii+ — R defined by

(4) 9(t%) = f() - f(0) (t€R)

is an element of P(R,).
Proof. If A € Mat*(2,R), then A is of the form

_[tzy tzx
4= ( ty t ) ’
where t,z,y € R. Therefore, the equation (1) fulfils for f : R — R if and only
if
(1°) f@zy+tz +ty) + ftz +ty+ 1)+ flzy—t) =

= f(tzy +tz +t) + f(tzy + ty + 1) + f(tz — ty)

is true for all t,z,y € R. Taking z = y = 0 in (1°), we have f(—t) = f(t) for
any t € R, i.e. f is an even function. :
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On the other hand, taking £ = y in (1°), we obtain
(5) 2(f(tz? +tz +t) - f(0)) =

= f(tz? + 2tz) — f(0) + f(2tz +t) — £(0) + f(tz® —t) — f(0)
for all t,z € R. Let

(6) u =tz 4 2z and v:=—(2tz +1).

It is easy to see that for any (u,v) € R? there exists (f,z) € R? such that the
equations (6) are true. From (6), we have u + v = tz — ¢ and

wl+uv+v? = (tz? +2tz)? + (122 + 2tz)(— 2tz —t) + 2tz +t)? = (tz? +tz +1)°.

Therefore, under the notation (4), from (5) we obtain (2) for any u,v € R, i.e.

Theorem 2. If g € P(ﬁ,.), then the function f : R — R defined by
(4°) f#) = 9(t*)+ f(0) (teR)

is an element of S(R).

Proof. From (2), by taking u = v = 0, we have g(0) = 0, i.e. (4°) is true
for t = 0. Moreover, from (2), for arbitrary ¢, z,y € R, we obtain

29[(tz + ty + t)* + (tz + ty + t)(toy — t) + (tzy — 1)) =

(M = gl(tz + ty + )%} + gl(tzy — t)2] + g[(tzy + tz + ty)?] =

= f(tzy +tz + ty) + f(tz + ty + t) + f(tzy — t) — 3£(0).
From the identity

(tz+ty+ )+ (tz+ty+t)(tzy—t)+ (tzy—t)* =

= (tzy + ty + t)? + (tzy + ty + t)(tz — ty) + (tz — ty)?,
because of g € P(R, ), it follows that

29((tz +ty + t)2 + (tzy + ty + t)(tz - ty) + (tz — ty)?] =

(8) = gl(tzy + ty + £)*] + gl(tz — ty)?] + gl(tzy + tz + t)*] =
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= f(tzy +tz + t) + f(tzy + ty + t) + f(tz — ty) — 3£(0).
From (7) and (8), we obtain that f € S(R).

4. Results on the sets P(R;) and Q(R,)

Theorem 3. If g € P(R,), then g € ¢(Ry).
Proof. Becduse of the identity

u2+uv+v2=%(u—v)2+%(u+v)2 (u,v € R),
from (2), with the notations

9) z:=(u—v)? and  y:=(u+v)?

we have
2 2 2 2 2 1 3
o() +9(67) = 20(u7 + w+ )~ g((u+ ") = 29 (32 + 30) - o)

and
o) + (o) = 29 (3 + 32) - (@),

i.e. (3) is fulfilled. Since for any (z,y) € ﬁi there exists (u,v) € R? such
that the equations (9) are true, therefore, (3) is true for any z,y € Ry, i..

9 € Q(Ry).

Remark. By Theorem 3, P(Ry) C Q(R,), but the converse inclusion
need not be true.

Theorem 4. If € Q(ﬁ+), then the function H ﬁi — R defined by

(10)  H(z,t):=g(z+9t)—g(z+1t)—g(9) +g(t) (z,t€Ry)
is an additive function of its first variable, i.e.
(11) H(z +y,t) = H(z,t) + H(y,1)

forallz yte ﬁ.,..



On a functional equation connected with an identity of Ramanujan 27

Proof. If we replace z by %z and y by 4y in (3), then we get

(12) 29 (g + 3y) =29(z+y)+9(4y) — g (4?:)

for all z,y € R,. Hence, by putting z + 9t in place of z, we obtain
4
(13) 2 (g +3y+ 3t) =29(z +y+9t) +9(4y) — ¢ (-33 + 12t) .

Moreover, by putting (y + t) in place of y, we obtain

4
(14) 29 (§+3y+3t) =29(z+y+t)+g(4y+4t)—g(?x).

Now, the difference of (13) and (14) yields
4z 4z
(15) 2g(z+y+9t)—2g9(z+y+t) = g(dy+4t)—g(4y)+g (—3- + 12t) -9 (—3—)

for all z,y,t € ﬁ+.

Finally, denote by (I), (IT) and (III) the particular cases of the equation
(15) when y = 0, z = 0 and = = y = 0 respectively. And compute the sum
(15)-(I)-(I1)+(III) of equations. Then, because of (10), we get (11).

Theorem 5. If g € Q(R,), then the function H :ﬁi — R defined by
(10) is symmetric (consequently H is a symmetric biadditive function on ﬁi)

Proof. From the definition of H, it is easy to see that
(16) H(z+9,y)+ H(z+y,t)= Hz+9,t)+ Hz +t,y)
for all z,y,t € R,. Moreover, from (16), by (11), we obtain
H(9t,y) - H(t,y) = H9y,t) — H(y,1).

Hence, since H(kt,y) = kH(t,y) for all k € N, it is clear that H(t,y) = H(y,t).
Thus H is additive in its second variable, too. '

Theorem 6. Ifg € Q(-lﬁ+) then there erist a symmetric biadditive

function A, : ﬁi — R, an additive function A, : TR+ — R and a number
Ag € R such that

(17) 9(z) = Az(z,2) + Ai(z) + Ao (zE€RY).
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Conversely, if g is of the form (17), then g € Q(ﬁ.,,)

Proof. If g € Q(R,), then by Theorem 5 the function H defined by (10)
is symmetric and biadditive. Therefore, the function Az given by

1 -
AZ(z)y) = I_GH(I,y) (z)y€R+)
is also symmetric and additive. An easy computation shows that
Az(z +9y,z 4+ 9y) — A2z + y,2 +y) — A2(9,9y) + Aa(y,9) =

:16A2(z,y)=H(z,y) (z,yE]TR.,.).

Therefore, with the notation

(18) a(z) = g(z) — Az(z,2) (z€Ry),
we have
(19) a(z+9) +a(y) =a(z+y) +a®)  (e,yERy).

Now, replacing z by 9y and y by z in (19), we obtain

(20) a(9y + 9z) + a(z) = a(9y + z) + a(9z).
Moreover, defining

(21) b(z) == a(9z) —a(z)  (z €Ry),

from (19) and (20) we obtain

(22) bz +y)=bz)+b(y) (syeRy).
From (19), by (21), it also follows that

(23) bz)=a(9z+y)—a(z+y) (z,yE€RY).
On the other hand, because of (22), we have

(24) b(z) = %b(92+y)— %b(z+y) (z,y€Ry).

Therefore, the function A; defined by

(25) Mi(z)=5be)  (@eRy)
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is additive. Moreover, because of (23) and (24), the function ¢ defined by
(26) c(z) := a(z) — Ai(z) (z €Ry)

has the property

(27) c9z+y)=cz+y) (z,y€Ry).

Now, to complete the proof, we need also prove the following

Lemma. If the function ¢ : Ry — R satisfies (27), then c(z) = c(1) for
allz eR,.

Proof. By putting y = 0 in (27), we obtain ¢(9z) = c(z) for all z € Ry.
Hence, by induction, it is clear that

(28) o(9') = ¢(1)
for all I € Z. On the other hand, taking
(29) t:=9z+y and s:=z+y,
we obtain that
(30) c(t) = c(s) whenever 9s >t > s> 0.
Now, if z € R, such that z # 9 for all | € Z, then there exists a k € Z such
that
9 < z < 9FtL,

Hence, by (30) and (28), it is clear that

(2) = c(9*) = e(1).

Having proved the above lemma, now we can briefly accomplish the proof
of Theorem 6. Namely, from (18) and (26), it follows that

(31) 9(z) = Ag(z,2) + Ai(2) + c(z)  (z €Ry).
And now substituting this into (12), moreover using the above lemma and

putting z = 0 and y > 0, we have ¢(0) = ¢(1) := Ap, i.e. ¢(z) = Ap for all
T e IR+.
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Theorem 7. The function g : Ry — R is an element of P(R,) if and

only if there ezist additive functions a, A} : Ry — R such that
(32) 9(z) = a(z®) + Ay(2)

for all R,

Proof. Since P(R;) C Q(R4), each g € P(R,) can be written in the
form (17). From ¢(0) = 0 it follows that Ay = 0. Substituting (17) into (2), an
easy computation gives

Aa(u?,v?) = Az(uv, uv) (u,v € Ry).

Hence, taking v = 1, it can be seen that the function a : Ry — R defined by
a(t) := A»(t,1) is additive and moreover

(33) Ax(u,u) =a(u?)  (u€Ry)

is true. Thus the theorem is proved.

5. The main theorem

Now we are ready to prove the following

Theorem 8. The function f : R — R is an element of S(R) if and only
if there ezist additive functions a,b: R, — R and a number ¢ € R such that

(34) f(z) = a(z*) + b(z?) + ¢

for all z € R.

Proof. By Theorems 1 and 2, f is an element of S(R) if and only if there
exists a ¢ € P(R;) such that f(t) = g(t?) + f(0) for all t € R. And hence,
by Theorem 7, it is clear that, with the notations b := A, and ¢ := f(0), (34)
holds.

Remarks. (i) Theorem 8 gives the complete solution of our problem. If we
suppose some regularity properties of f € S(R), (for instance, f is measurable
on a set of positive measure [1}), then the additive functions a and b in (34) are
continuous. Therefore, there exist a, § € R such that a(z) = ez and b(z) = fz
for all z € R,.
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(1) The functional equation (3), whenever it is assumed to hold for all
z,y € R, is well-known in the theory of functional equations. Namely, in this
case, it is a particular case of a very large class of functional equations on
Abelian groups [5].

(iii) The problem solved here can be generalized: Let F(+,:) be a
commutative ring and let S(+) be a commutative group. Find all solutions
f : F — S of the functional equation

Rj(A)=0 (A€ Mat’(2,F)),

where R;(A) and Mat®(2, F')are defined accordingly.
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