ON A SECOND ORDER NON-NEGATIVITY CONSERVING METHOD

Z. Horváth (Győr, Hungary)

1. Introduction

Consider the following parabolic differential equation along with first kind boundary conditions

(1)
$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = F(x, t), & 0 < x < 1, \ t > 0, \\ u(x, 0) = u_0(x), & 0 < x < 1, \\ u(0, t) = u(1, t) = 0, & t \ge 0. \end{cases}$$

As it is well-known, this model problem arises by appropriate simplification of many physical problems, for example the problem of one-dimensional heat conduction. The exact solution of (1) is known to be non-negative if $F(x,t) \ge 0$ and $u_0(x) \ge 0$ ($\forall x \in [0,1], \forall t \ge 0$).

Using the standard difference approximation for the spatial derivative we get a semi-discrete approximation of (1)

$$\begin{cases} y' - Ay = f \\ y(0) = y_0 \end{cases}$$

where $y_0 \in \mathbb{R}^N$, $A \in \mathbb{R}^{N \times N}$, $f, y : [0, \infty) \to \mathbb{R}^N$. This approximation preserves the non-negativity property of (1): if $y_0 \ge 0$ and $f(t) \ge 0$ then $y(t) \ge 0$ since $-a_{i,j} \ge 0$ for all $i \ne j$, see [1].

It is a natural requirement that a numerical method solving (2) should have this so-called non-negativity preserving property, too.

For solving (3) numerically we want to choose the time-stepsize τ independently from the given spatial stepsize h = 1/(N+1). Then, in general, the requirement of preservation of non-negativity calls forth a barrier of the order of the numerical method: such a method is of order 0 or 1, see [2].

In this paper we give a method of order 2 that preserves the non-negativity unconditionally, i.e. without any conditions on stepsizes, such as e.g. $\tau/h^2 \le \text{const.}$

Z. Horváth

Concerning A we require only that A preserves non-negativity. We achieve this using a suitable approximation of the matrix exponential.

For the sake of brevity we introduce the following notations:

- for all $v = (v_1, \ldots, v_N)^T \in \mathbb{R}^N$, $v \ge 0$ means $v_i \ge 0$, $1 \le i \le N$;
- if g is a real function defined on a set S, $g \ge 0$ means $g(t) \ge 0$ for all $t \in S$.

2. Approximation of the matrix exponential

238

We start from the identity $e^a = e^{\frac{1}{2}b}e^{a-b}e^{\frac{1}{2}b}$ for real numbers a and b. If we replace a and b by $N \times N$ -matrices A and B then, in general, the equation will not be true. Namely, it is well-known (see e.g. [1]) that for all $C, D \in \mathbb{R}^{N \times N}$ if CD = DC then $e^C e^D = e^{C+D}$ but if $CD \neq DC$ then generally $e^C e^D \neq e^{C+D}$.

So, in general, $e^A \neq e^{\frac{1}{2}B}e^{A-B}e^{\frac{1}{2}B} =: E(A; B)$ as an approximation of the matrix exponential e^A .

Let us consider the following initial value problem:

$$\begin{cases} y' - Ay = 0 \\ y(0) = y_0 \end{cases}$$

where A is an arbitrary $N \times N$ -matrix and y_0 an arbitrary N-vector. We know that the exact solution of (3) is

$$y(t) = e^{At}y_0, \qquad t \geq 0.$$

Let us replace in (4) e^{At} by E(At; Bt), where B is an arbitrary real $N \times N$ -matrix. Then

(5)
$$\overline{y}(t) = E(At; Bt)y_0$$

is an approximate solution of (4). In fact, let z = z(t) denote the error of \overline{y} , i.e. $z(t) := \overline{y}(t) - y(t)$.

Definition 1. We say that E(A; B) is an approximation for e^{A} of order p $(p \in N)$, if $z(t) = O(t^{p+1})$ $(t \to 0)$.

Theorem 1. For arbitrary $A, B \in \mathbb{R}^{N \times N}$ the matrix E(A; B) is a second order approximation for e^{A} .

Proof. For all A, B the first three Taylor-coefficients at 0 of z are zero:

(6)
$$z(0) = \overline{y}(0) - y(0) = y_0 - y_0 = 0,$$

(7)
$$z'(t) = \overline{y}'(t) - Ay(t) = \left(\frac{1}{2}BE(At;Bt) + e^{\frac{1}{2}Bt}(A-B)e^{(A-B)t}e^{\frac{1}{2}Bt} + \frac{1}{2}E(At;Bt)B\right)y_0 - Ae^{At}y_0,$$

thus $z'(0) = Ay_0 - Ay_0 = 0$.

(8)
$$z''(0) = \left(\frac{1}{2}BA + \frac{1}{2}B(A-B) + (A-B)^2 + \frac{1}{2}(A-B)B + \frac{1}{2}AB\right)y_0 - A^2y_0 = 0.$$

Thus $z(t) = O(t^3)$ $(t \to 0)$, which was to be proved.

Remark 1. By a similar calculation one can get

(9)
$$z'''(0) = \left(\frac{1}{4}B^2A + \frac{1}{4}AB^2 - \frac{1}{2}BAB + \frac{1}{2}A^2B + \frac{1}{2}BA^2 - ABA\right)y_0,$$

so in general $z(t) \neq O(t^4)$ $(t \to 0)$.

3. On the preservation of non-negativity

Denoting the exact solution of (2) by y = y(t) the preservation of non-negativity can be formulated as follows (c.f. [2]).

Definition 2. We say that $A \in \mathbb{R}^{N \times N}$ preserves the non-negativity (or A is a non-negativity preserving matrix), if $y_0 \ge 0$ and $f \ge 0$ imply $y \ge 0$.

Remark 2. Since
$$y(t) = e^{At}y_0 + \int_0^t e^{A(t-s)}f(s)ds$$
 $(t \ge 0)$, so

(10)
$$y \ge 0$$
 for all $y_0 \ge 0$, $f \ge 0$ iff $e^{At} \ge 0 \ (\forall t \ge 0)$.

Moreover $e^{At} \ge 0$ ($\forall t \ge 0$) iff the elements of A that are not in the diagonal are non-negative (see e.g. [1]). Thus A preserves the non-negativity iff $A - \text{diag } a_{i,i} \ge 0$.

We consider now the following approximate solution of (2): let $\tau > 0$ be an arbitrary stepsize, $t_n := n\tau$ $(\forall n \in N)$ and

(11)
$$y_{n+1} := r(\tau A)y_n + \tau \sum_{i=1}^{q} r_i(\tau A)f(t_n + c_i\tau) \quad (n \in N)$$

where q, c_i are given constants and r, r_i are given functions $(1 \le i \le q)$. y_n will be regarded as an approximation of $y(t_n)$.

Definition 3. We say that a method of type (11) preserves non-negativity unconditionally, if for all $\tau > 0$, $y_0 \ge 0$, $f \ge 0$ and for all non-negativity preserving matrices A there holds $y_n \ge 0$ for every $n \in N$.

Bolley and Crouzeix proved the following important theorem ([2]):

Theorem. If a method of type (11) preserves non-negativity unconditionally and r, r_i are rational functions, then the order of this method is at most one.

Therefore, we will admit other than rational functions r and r_i 's in (11) and create (approximating e^{At} by E(At; Bt)) an unconditionally non-negativity preserving method with a (global) error of order 2. In order to formulate such a method in a conveniently realizable way, we use the following modification of E(A; B).

Definition 4. Let $E_k(A;B) := e^{\frac{1}{2}B} \sum_{j=0}^k \frac{1}{j!} (A-B)^j e^{\frac{1}{2}B}$, where $k \in N$ and $A, B \in \mathbb{R}^{N \times N}$ are arbitrary.

Remark 3.

- a) If B is a diagonal matrix, then $e^{\frac{1}{2}B}$ (and thus E(A;B)) can be easily computed: $e^{\frac{1}{2}B} = \text{diag } e^{\frac{1}{2}b_{i,i}}$ and obviously $e^{\frac{1}{2}B} > 0$.
 - b) It is clear from Section 2, that k > 2 implies $E_k(At; Bt) = O(t^3)$ $(t \to 0)$.

Before formulating our main result it will be advantageous to give the following definition.

Definition 5. We say that $q \in N^+$, b_i , c_i $(1 \le i \le q)$ are the parameters of a positive quadrature of order p, if $b_i \ge 0$, $c_i \in [0,1]$ $(1 \le i \le q)$ and for any sufficiently smooth function g there holds $\int_0^\tau g(s)ds = \tau \sum_{i=1}^q b_i g(c_i\tau) + O(\tau^{p+1})$ $(t \to 0)$.

Remark 4. For example, q = 2, $c_1 = 0$, $c_2 = 1$, $b_1 = b_2 = \frac{1}{2}$ (i.e. the parameters of the trapezoidal rule) are parameters of a positive quadrature.

We come now to our main result.

Theorem 2. Let $k \geq 2$ and let q, b_i , c_i $(1 \leq i \leq q)$ be the parameters of a positive quadrature of order 2. Define the functions r, r_i as follows: for all $H = (h_{i,j} \in R^{N \times N} \text{ let } r(H) := E_k(H; \text{diag } h_{j,j}) \text{ and } r_i(H) := b_i r((1 - c_i)H)$. Thus the method defined in (11) is of order 2 and preserves non-negativity unconditionally.

Proof. One can easily see that the exact solution y = y(t) of (3) can be written in the form

(12)
$$y((n+1)\tau) = e^{A\tau}y(n\tau) + \int_{0}^{\tau} e^{A(\tau-s)}f(n\tau+s)ds, \quad n \geq 0$$

where $\tau > 0$ is an arbitrary stepsize.

The previous remarks (3a, b), the conditions of the theorem and (12) imply that the approximation $y_n \approx y(t_n)$ is of order two.

Let now A be an arbitrary non-negativity preserving matrix, then for every $\tau > 0$ we have $r(\tau A) \ge 0$ and $r_i(\tau A) \ge 0$. Indeed, e.g.

(13)
$$r(\tau A) = E_{k}(\tau A; \tau \operatorname{diag} a_{j,j}) =$$

$$= e^{\frac{1}{2}\tau \operatorname{diag}(a_{i,i})} \sum_{j=0}^{k} \frac{\tau^{j}}{j!} (A - \operatorname{diag} a_{i,i})^{j} e^{\frac{1}{2}\tau \operatorname{diag}(a_{i,i})}$$

and all matrices and all coefficients on the right-hand side are non-negative, thus their product and sum is non-negative, too.

Hence the theorem is proved.

Acknowledgement. The author wishes to thank G. Stoyan for posing the problem of the construction of non-negativity preserving method using the matrix exponential of a diagonal matrix.

References

- [1] Bellman R., Introduction to matrix analysis, McGraw-Hill, N.Y., 1953.
- [2] Bolley C., Crouzeix M., Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques, R.A.I.R.O. Analyse numérique, 12(3) (1978), 237-245.

(Received June 30, 1992)

Z. Horváth

Department of Mathematics and Natural Sciences Széchenyi István Technical Highschool Győr, Hungary