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ON A SECOND ORDER NON-NEGATIVITY
CONSERVING METHOD

Z. Horvith (Gy6r, Hungary)

1. Introduction

Consider the following parabolic differential equation along with first kind
boundary conditions

ou 0%u
5 30 =F@t),  0<z<1,t>0,
(1) u(z,0) = uo(z), 0<z<1,

u(0,t) = u(1,t) =0, t>0.

As it is well-known, this model problem arises by appropriate simplification
of many physical problems, for example the problem of one-dimensional heat
conduction. The exact solution of (1) is known to be non-negative if F(z,t) > 0
and ug(z) >0 (Vz € [0,1], Vt > 0).

Using the standard difference approximation for the spatial derivative we get
a semi-discrete approximation of (1)
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where yo € RN, A € R¥N*N | f .y :[0,00) = RN. This approximation preserves
the non-negativity property of (1): if yo > 0 and f(t) > 0 then y(¢) > 0 since
—a; ; > 0 for all i # j, see [1].

It is a natural requirement that a numerical method solving (2) should have
this so-called non-negativity preserving property, too.

For solving (3) numerically we want to choose the time-stepsize 7 indepen-
dently from the given spatial stepsize h = 1/(N + 1). Then, in general, the
requirement of preservation of non-negativity calls forth a barrier of the order
of the numerical method: such a method is of order 0 or 1, see [2].

In this paper we give a method of order 2 that preserves the non-negativity
unconditionally, i.e. without any conditions on stepsizes, such as e.g. 7/h? < const.
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Concerning A we require only that A preserves non-negativity. We achieve this
using a suitable approximation of the matrix exponential.

For the sake of brevity we introduce the following notations:
eforallv=(vy,...,vN)T€RN, v>0means v; >0,1<i<N;

o if g is a real function defined on a set S, g > 0 means g(t) > 0 for allt € S.
2. Approximation of the matrix exponential

We start from the identity e = e3%e=%¢3? for real numbers a and b. If we
replace a and b by N x N-matrices A and B then, in general, the equation will
not be true. Namely, it is well-known (see e.g. [1]) that for all C,D € RV*N if
CD = DC then e€eP = ¢€+P but if CD # DC then generally eCel # e€+P,

So, in general, eA # e¥BeA-Be3B = F(A; B) as an approximation of the

matrix exponential e4.

Let us consider the following initial value problem:

y—A
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where A is an arbitrary N x N-matrix and y, an arbitrary N-vector. We know
that the exact solution of (3) is

(4) y(t) = ey, t20.

Let us replace in (4) e4! by E(At; Bt), where B is an arbitrary real N x N-
matrix. Then

(5) ¥(t) = E(At; Bt)yo

is an approximate solution of (4). In fact, let z = z(t) denote the error of ¥, i.e.
2(t) = 3(t) - y(2).

Definition 1. We say that E(A; B) is an approximation for e4 of order p
(p € N), if z(t) = O(tP*}) (t — 0).

Theorem 1. For arbitrary A,B € RN*N the matriz E(A;B) is a second
order approzimation for eA.

Proof. For all A, B the first three Taylor-coefficients at 0 of z are zero:

(6) z(0) = %(0) — y(0) = yo — yo = 0,
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Z(t) = 7(t) — Ay(t) = (%BE(At; Bt) + e¥Bt(A — B)e(A-B)tedBty
(M .
+ §E(At; Bt)B) Yo — Aettyo,

thus 2’(0) = Ayo — Ayo = 0.

®) 2"(0) = (%BA + %B(A -B)+(A-B)*+ %(A -B)B + %AB) Yo—

— A%y = 0.

Thus z(t) = O(t3) (t — 0), which was to be proved.

Remark 1. By a similar calculation one can get

1

9 Z"(0)= (—32,4 + %AB"’ - %BAB + 1

2

1 A’B + %BA’ - ABA) Yo,

so in general z(t) # O(t*) (t — 0).
3. On the preservation of non-negativity

Denoting the exact solution of (2) by y = y(t) the preservation of non-
negativity can be formulated as follows (c.f. [2]).

Definition 2. We say that A € RV*N preserves the non-negativity (or A is
a non-negativity preserving matrix), if yo > 0 and f > 0 imply y > 0.

t
Remark 2. Since y(t) = eA'yo + [eA(t=2) f(s)ds (t > 0), so
0

(10) y>0 forall y >0, f>0 iff €4 >0 (Vt>0).

Moreover eA* > 0 (Vt > 0) iff the elements of A that are not in the diagonal are
non-negative (see e.g. [1]). Thus A preserves the non-negativity iff A—diaga;; > 0.

We consider now the following approximate solution of (2): let 7 > 0 be an
arbitrary stepsize, t, := nr (Vn € N) and

q
(11) Ynt1 = r(TA)yn + rZr;(TA)f(t,. +¢1) (nEN)

=1
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where ¢, ¢; are given constants and r, r; are given functions (1 < i < ¢). y, will
be regarded as an approximation of y(t,).

Definition 3. We say that a method of type (11) preserves non-negativity
unconditionally, if for all 7 > 0, yo > 0, f > 0 and for all non-negativity preserving
matrices A there holds y, > 0 for every n € N.

Bolley and Crouzeix proved the following important theorem ([2]):

Theorem. If a method of type (11) preserves non-negativity unconditionally
and r, r; are rational functions, then the order of this method is at most one.

Therefore, we will admit other than rational functions r and r;’s in (11)
and create (approximating e4* by E(At; Bt)) an unconditionally non-negativity
preserving method with a (global) error of order 2. In order to formulate such
a method in a conveniently realizable way, we use the following modification of
E(A; B).

1

A — B)e3B | where k € N and
j!

k
Definition 4. Let Ex(A;B) := e38 Y
j=o
A, B € RNXN are arbitrary.

Remark 3.

a) If B is a diagonal matrix, then e3® (and thus E(4;B)) can be easily
computed: e38 = diag e} and obviously e¥2 > 0.

b) It is clear from Section 2, that k > 2 implies Ei(At; Bt) = O(t3) (t — 0).

Before formulating our main result it will be advantageous to give the following
definition.

Definition 5. We say that ¢ € N*, b;, ¢; (1 < < q) are the parameters
of a positive quadrature of order p, if b; > 0, ¢; € [0,1] (1 < i < ¢) and for any

> big(eir) +O(P+1) (¢ —

sufficiently smooth function g there holds }y(s)ds =T
0 1

0).

3

1 .
Remark 4. For example, ¢ = 2, ¢; =0, c2 =1, by = by = 3 (i.e. the
parameters of the trapezoidal rule) are parameters of a positive quadrature.
We come now to our main result.

Theorem 2. Let k > 2 and let ¢, b;, ¢; (1 < i< q) be the parameters of a
positive quadrature of order 2. Define the functions r, r; as follows: for all H =
= (hij € RN*N let r(H) := Ex(H;diag h; ;) and ri(H) := b;r((1 — ¢;)H). Thus
the method defined in (11) is of order 2 and preserves non-negativity uncondition-
ally.
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Proof. One can easily see that the exact solution y = y(t) of (3) can be
written in the form

T

(12) y((n + l)r) = e“’y(nr) + /e"("’)f(nr + s)ds, n>0

where 7 > 0 is an arbitrary stepsize.

The previous remarks (3a,b), the conditions of the theorem and (12) imply
that the approximation y, = y(t,) is of order two.

Let now A be an arbitrary non-negativity preserving matrix, then for every
> 0 we have r(7A) > 0 and r;(7A) > 0. Indeed, e.g.

r(tA) = Ex(TA;rdiag a; ;) =
13 . ki -
( ) — e%rdmg(a,,,)z_;_!(A _ dlag ai,i)]e-}‘rdlag(a.,,')
=0
and all matrices and all coefficients on the right-hand side are non-negative, thus
their product and sum is non-negative, too.

Hence the theorem is proved.
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problem of the construction of non-negativity preserving method using the matrix
exponential of a diagonal matrix.
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