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WALSH WAVELETS

B. Granados (Mérida, Venezuela)

1. Introduction

In theoretical and practical investigations two types of wavelets are considered.
Weyl-Heisenberg coherent states, which arise from translations and modulations of
a single function, called mother wavelet, and affine coherent states, which arise as
translations and dilations of a single function (see [1], [2], [3]).

In this paper we shall investigate a new type of wavelets obtained from the
mother wavelet using dilation and modulation. Instead of usual modulation we
consider the dyadic modulation, i.e. multiplication by the characters of the dyadic
group. Thus the functions in question are of the form

(1) Pmn(z) = wm(z)p(2"z) (1: €[0,00), m,n€ N)’

where (wp,, m € N) is the Walsh system in Paley’s ordering and p is a 1-periodic,
locally integrable function on [0, c0) (see [4]).

In this paper we give sufficient conditions for periodic functions such that the
system {@mn : 2" < m < 2", n > 1} defined by (1) is an exact frame in

L[0,1]:= {feLZ[O,l]:/fzo}.

The condition in question can be expressed with the help of a new semi-norm of
the mother wavelet p, namely by

llell, = ( DRG] I

i=1 \I(k)=j

where
1

A(k) = / ptywe(t)dt (k€ N)

0
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are the Walsh-Fourier coefficients of p and I(k) is the sum of non-zero digits in the
binary expansion of k. This number is called the diversity of k.

Obviously the Walsh system can be obtained as a special case, corresponding
to the function p(z) = 1 (z € R). A subsequence of the integrated Walsh functions
is also a system of this type. In this special case we give an explicit form for the
inverse frame. Moreover, starting from the Walsh system and using integration we
can get infinitely many systems of the above type.

2. Frames in Hilbert spaces

In this paper we shall investigate frame expansions connected with the inte-
grated Walsh system. The notion of the frame is a generalization of the base. We
consider here frames in Hilbert spaces.

Let (H,(,)) be a Hilbert space and z, € H (n € N) be a sequence in H.

The collection X = (z,,n € N) is called frame if there exist constants 0 <
m < M < oo such that

(2) ml|zl|* < Y |(z, za)? < M2|

neEN

holds for all z € H (see [1], [3]).

The constants m and M are called frame constants. The frame is called tight
if the frame constants coincide. A frame is called ezact if it ceases to be a frame if
even one element is deleted from the sequence.

It is known that X = (z,,n € N) is a frame if and only if the series

3) F(z):= Z(z,zn):"

neN

converges for all z € H and its sum F is 1 — 1 map from H onto H.

The map F is called the frame operator of X. It is obvious that the frame
operator F is positive definite and

(Fz,z) = 2:|1::1:,l |2 (z € H).
neEN

If F~! is the inverse of the frame operator then the sequence Z, = F~!(z,) €
H (n € N) is also a frame called the inverse frame of X and its frame operator is

F = F~1. The operators F and F~! are symmetric.
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Frame can be used to define two expansions in H. Namely from (3) we get for

allz,ye H
z :=Z (z,2n)Zn,
neN
y:i=)  (9,Zn)zn.
neN

The sequences ({(z,z,),n € N), ((y, Zn),n € N) are called the frame coefficients of
z and y, respectively. These series converge in the norm of H, and these expansions
are analogous to the biorthogonal expansion. It is known that the frame X is exact
if and only if (z,,Zn,) = 1 for all m € N and exact frames are minimal systems.
In this case (£,,n € N) and (z,,n € N) are biorthogonal.

It is convenient to represent frames and frame operators in a suitable complete
orthonormal system. Let (e,,n € N) be a complete orthonormal system in H and
denote

oo

(4) 2L =Y aneen  (KEN)

n=0

the Fourier expansion of zx € H with respect to this basis. First we show that the
matrix of the frame operator can be expressed by the matrix

A= [am"]?:,n=0‘

Namely if B = [(Fen, ém)]mm n=o is the matrix of F' in the basis in question then

(5) B = AA".
Indeed, since
00
Fe, = Z(en, Ti)Tk
k=0

and this series converges in norm, therefore

(o] o]
(Fen,em) =D (en, Ze)(zh,em) = D _Gnkdmi = (AA")mn
k=0 =0

and (5) is proved.

The inverse matrix B~! of B is the matrix of the inverse frame operator F.
We shall show that if A is invertible then the Fourier expansion of the inverse frame
can be expressed by A = A~! = [a;;]$% .
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Proposition 1. Let (§) be the ezpansion of the frame X with respect to the
orthonormal basis e, € H (n € N). If A has an inverse matriz, then the inverse

frame can be ezpressed by the matriz A = (A~!)* = [@nk] k=0 in the form

(s <]

(6) Ty = Z&nken (k € N)

n=0

Proof. Denote F the frame operator. Then by definition Z; = F~1(zy), or
equivalently

(M zi = F(Zy).

Using the fact that B is a matrix representation of F, equality (7) can be written

in the form
o0

(zk,en) = Ebnl(ih er).

1=0

Hence, using (4) and (6) we get
Ank = Ebnlalk (n, ke N)
1=0
or in matrix form

A=BA=AA"A
Since A~! exists, therefore A* has also an inverse (A*)~! = (A~!)*, and conse-
quently
A=(4a""1!
and our claim is proved.

We shall give a useful sufficient condition for the matrix A to guarantee the
existence of the inverse A~1. Write A in the form

A=1-C,
where I = [6;;]75 - is the identity matrix, and denote
Jk={n:c,,k¢()} (kEN)

the support of k-th column of C.
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Proposition 2. Let (ani,n € N) be the Fourier-coefficients of zx € H
(k € N) with respect to the complete orthonormal system (e,,n € N) and set
C = I — A. Suppose that there ezists a number 0 < k < 1 such that for every
keN

(=]
(8) Zlc"“lz < k2

n=0
and the supports of the columns are pairwise disjoint, i.e.
9) JaNIn =0 if m#n.

Then the induced norm by the I2-norm of C* satisfies
i) ||C*|| < x and consequently A has an inverse, and
ii) (zk, k € N) is a frame.
Proof. i) To prove that the the norm of C* is not greater than «, let

(zj,J € N) be the coordinates of z € H and (y;,j € N) the coordinates of y = C*z.
Then

[oe]

yi = Za'j z;

=0

and by definition of J;, using Cauchy’s inequality we get

[ o] 2 [e o]
lyil* = |D_aijzi| < (Zlc.'j|2> Solail? | <x?)°lmil*
i=0 i=0 i€J; i€J;

Thus by condition (9)

licezl* = Zlyal"’ < Kzz Y olzil? < #2)lzal® = £z,

j=0 ieJ; neEN

Consequently [|C*z|| < x||z||, i.e. ||C*|] < &. Since ||C*|| = ||C|| < &, therefore the
inverse of A = I — C exists.

ii) We shall prove that if z € H then

3
(10) llzlI(1 - =) < (Zl(r,zk)lz) < (1 +x)|=]l-

keN
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Using the notations #(n) = (z,z,), £ = (z,e,) (n € N) for the Fourier coefficients
with respect the complet orthonormal system (e,,n € N), the equality

Ty = € — chken
neN

can be expressed in the form
¥f=z-C"z.

Hence we have that
12ll;s = NC*[I N12]l1a < N2l = 1|12 = C* 2|12 < ||2]l1a + ||C*|] |2]];2

and (10) is proved.

Proposition 2 will be used in the case when the matrix C is generated by one
sequence (b,,n € P), where P = N\{0}.

Starting from the sequence (b,,n € P) we introduce the matrix C with rows
satisfying certain lacunarity conditions given by the diversity. Fix j € P,2"~! <
m < 2" for some n € P and set

by, if I=k2"+m and I(k)=j;
Cim =
0, elsewhere.

The norm of C = (¢im )i, mep induced by the I?-norm is estimated in
Proposition 3. Let (by,n € P) be in 2. Then

ICI < ell;a-

Proof. We show that proposition 2 can be applied. To this end it is enough
to prove that condition (9) is satisfied. We have to prove that the sets

Jn ={k2"+m:k=1,2,...,1(k) = j}
2"-1 < m < 2", n € P are pairwise disjoint. In fact, let m, = € P such that
" l<m<2®, " 1<m<2® nReP.

Suppose that n < 7 and k2" + m = k2% + 7 € J,, N Js. Since I(k) = (k) = j,
therefore k and k are of the form

k=2 4234 ... 42, k=242 4 49
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with some vy > v > ...>v; 20and iy >0 > ... > > 0.
Thus

guitn pguatn 4 ovitn p o iR L ohath 4 ot 4 )
where 2" > m and 2" > i and consequently
vi+n=p+n  for i=1,2,...,].

Hence we get m = m.

We shall see that conditions (8) and (9) are satisfied in many cases. To show
this, let f :[0,1] — R defined by

(11) f=1=) bw
k=1

extended to R by periodicity with period 1 and satisfying the following condition
o ]

(12) AL =3 3 bel?) <1
J=1 \l(k)=j

Using Proposition 2 we shall prove that this function generates an exact frame
in L[0, 1].

Theorem 1. Let f be a function given by (11) and satisfying condition (12).
Then the system ¢ = (¢pm,m € P) defined by

(13) Pm(z) = wm(2)f(2"2z) (2*T'<m<2",n€P)

is an ezact frame in L3[0,1).

Proof. Since for any m < 2" and k,n € N
wi(2"z) = wani(z),  Wm(Z)wr2n(Z) = Wmtran(z)

the Fourier expansion of ¢y, is of the form

(o o]
Pm = Wy — Ebgwl,zn.,.m (2"‘l <m<2",neP).
k=1
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This can be written in the form
oo oo .
Pm = Wm — ZZcfﬁ,,)wz @ '<m< 2", neP),
j=11=1
where for any jne P, 2" 1 <m< 2"
) = be, if I=4k2"+m and (k) = j;
€im = 0, elsewhere.
Using the notation introduced before, the matrix of the frame operator is

A=1-C,

where C = 3°CU) and CU) is defined by
i=1

cW) = [ (J)]

lmEP.
1
2

By Proposition 3 we have that ||C)|| < ( 3 |bk|2) , consequently
I(k)=j5

ICIl = ZIIC(’)II < Z ( > |b,,|2) 5

j=1 I(k):j

Then by Proposition 2 we have that ¢ is a frame in L3[0, 1].
It is clear that

1
1ol < 3 ( > |bk|2) < el -
i=1 I(k):j
This implies
Corollary 1. If ||b||;, < 1 then the system (13) is an ezact frame.

3. Examples

In this section we give some examples of functions satisfying the conditions of
Theorem 1. In these examples we use the Walsh-Fourier expansion of the integrated
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Walsh functions. It is known (see [4], p. 27) that for m = 2" + m’ with 0 < m’ <
2" neN

z

(14) Im(2) = / Wen(8)dt = Wy (2)T3n ()

and

15 I@=2 (1 - Z?"'wzwﬂn(:)) @eR).
Jj=1

In the case m = 0, we have

Jo(z)=z=2""1- 2_222_jw21(z) (0<z<1).
j=0

3.1. First we investigate the frame obtained from

T

(16) pi(z) = 22/w,(t)dt =22J,(z) (z€R)
0

via the formula (1), using the sequence
(17) Pm(2) = wm(2)p1(22) ("1 <m< 2" nEP).
(Compare with (13) in Theorem (1).) From (14) and (15) we get
P =13 P,
i=1
and it is easy to check that

loill, = —
plt—\/g‘

Consequently by Theorem 1 the system ¢, in (17) is an exact frame. Later we
give an explicit form for its inverse frame.

3.2 From the function (16) by integration we obtain

p2(z) := 22/p1(2t)w1(t)dt =
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2 e o] oo [=<]
= 1 -_ §w3 - 22—"!02;‘4,1 + Z 22_2’—"_11021““+2,‘+1+2+1.
j=2 i=1 k=1

It is easy to verify that

1 1
== 19 —) ,
leall, = 5 (VI8+ 5
consequently by Theorem 1 the system

Pm(2) = wm(2)p2(2"z) ("' <m<2",n€P)

is an exact frame in L3[0, 1).

3.3 Generalizing the procedure introduced in (16) we define a sequence of
mother wavelets by the recursion

z

pn(z) = 22/p,._1(2t)w1(t)dt (neP,z€R),
0

where po(t) = 1 for t € R. The functions p,, are periodic with period 1 and ||p,]||,
can be estimated, can be used to construct exact frames.

4. The inverse frame

In this section we give an explicit form for the inverse frame in the case when
the mother wavelet is given by (16). In this case the frame ¢, given by (17) can
be written in the form

[o o] 00
Pm = Wy — E 27 W onponti = W — E Cim Wy,
ij=1 =0

where for m with 2°~! < m < 2", n € P we have

_J27i ifl=m4+2 427 j€P;
(18) Cim = {0, elsewhere.

In this case already we have seen in 3.1 that

1

leall, = 1IC1 = 7

)
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consequently the proof of Proposition 2 (ii) shows that the frame constants are

(l— %) and (1+%).

To get the inverse frame (Y, m € N) of (¢om, m € N) we use Proposition 1.
Namely the Fourier expansion of the inverse frame (¥, m € N) can be expressed
by the inverse of A, which can be obtained in the next explicit form.

Proposition 4. Let C be defined by (18). Then A = I — C has an inverse
matriz and D := A~! has the following form: if 2"~! < k < 2" with some n€ P
and m € P is of the form

(19) m=k+42" 2™ 4 2Mtl 4 oMo g gmiortl g ogm
wheren<n; <m+1<ny<...<ny_) <nu_1+1< ny, then
dp = 2-(m-n=(-1))

and dpmi = 0 elsewhere.

Proof. Since ||C|| < 1, C has an inverse which can be written in the form
D=I+4+C+C*+...+C"+....

We denote the entries of the matrices C' by [Cﬁ-)]j’jep and define them by recursion.
If n = 1 then c}) = ¢;; is defined by (18) and for i, j € P we have

(I+1) _ o= (1)
141) _ o
C'-j = Ci Ckj-

k=1

We prove that for all / € P and 2"~ < k < 2",n € P and for m of the form (19)
we have

(20) ot = 271771

and CE:;)k = 0 elsewhere. This claim can be proved by induction.

Let n € P and 2"~ ! < k < 2", then

[oo]

@ =N "epmse;
mk — mjCik-

i=1
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Since cjr #0if j=k+2"+2" ny; >nand ¢ #0if m = j+2M+ 427 ny >
n; + 1 it follows that

(2) _

— 9—(na=-n-1
Cmk = Ck42n42%+142%3 k42n 427 Ch2ngam kb = 2 (na ).

Applying induction suppose that (20) holds. Then from

[o o]

(+1) _ a ...
Cmk ) = D _CmyCik
ij=1

using hypothesis (20) we get that cjp # 0if j = k + 2" + 2", n; > n and cS,I,)J #0
if m is of the form

m:j+2n1+l+2vu+2nz+l+“.+2m+2m—1 +2n|+1’

wherenj +1<na<na+1<...<ny<n+1<np4;.
Consequently

CE:;I) = 92— (Mi41=(n1+1)-(I-1))9—(n1—n) _ 9—(ni41-n-1)

(":1) = 0 elsewhere, which completes the proof.

and c,,
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