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MULTIPLE QUADRATURE FORMULAE BY SPLINES*

Margit Lénérd (Debrecen)

Abstract. In this paper we construct multiple quadrature formulae
by integrating special spline functions in several variables. This spline
construction, the reduced n-quadratic interpolation of Hermite-type is
discussed in [7].

1. Introduction

In this paper we construct multiple quadrature formulae by integrating
special spline functions in several variables. This spline construction, the
reduced n-quadratic interpolation of Hermite-type is discussed in [7]. The
definition and its approximation properties are collected in the second section.
The quadrature formulae based on this spline function are discussed in the third
section. The error estimations and the recursive formulae for the quadrature
formulas in higher dimensions are simple corollary of their constructions.

For further references in spline theory see e.g. Ahlberg, Nilson, Walsh
1967 [1], de Boor 1978 [2], Schumaker 1981 [8], Steckin, Subbotin 1976 [10] and
Zavialov, Kvasov, Miroshni¢enko 1980 [11]. For references in multidimensional
spline approximational methods see the monumental bibliography by Franke,
Schumaker 1987 [4]. For other methods in approximate solution of multiple
quadrature we refer to Davis, Rabinowitz 1984 [3] and Stroud 1971 [9)].

Notations. In what follows R,Z and N denote the set of reals, the set of
integers and the set of the natural numbers (including zero). For any vector x
in R" we denote its j-th component by (x); = z;, that is x = (21, z3,...,%,).
Addition, multiplication and inequality between vectors will be defined com-
1
ponentwise. For x € R™ we use the Euclidean norm ||x|| = (¥7_, z7)*. If

a,b € R", then let
[a,b]={x€R":a<x<b}

*Research work supported by Hungarian National Science Foundation, Operating Grant
Number OTK A-429.



110 Margit Léndrd

and

a®=JJ(e))% (bj€Z, j=1,...,n),
j=1

where 0° = 1. The zero vector will be denoted by 0, furthermore e =
(1,1,...,1) and e; denotes the vector whose j-th coordinate equals to 1, the
others being zero (j = 1,2,...,n). The modulus of continuity of the function
u: R" — R will be denoted by w(d;u), i.e.

w(diu)= sup [u(t) - u(t)],
t,tela,b)
lle-¢l<d

where d denotes the (Euclidean) diameter of the set, on which the oscillation
of u is considered. The differential operators for multivariable functions will be
denoted as usual by

071932 ...05m.
If h > 0 and k € N, then let Al': denote the difference operator

AE = ARV R u(ty, . tn) (t eR"),

where A::"_'_"’:""u(tl, ...,tn) is the product of the k;-th iterates of the difference
operators with increment h; in the j-th variable, respectively.

2. Reduced n-quadratic spline interpolation of
Hermite-type

Let {ti};czn be an equidistant subdivision of R* with h = (hy, ks, ..., hy),
that is (tije, —ti)j = hj. Let {u;};¢zn and {ui(ej)}iez,, (G =1,2,...,n) be

given systems of real numbers. Let d = ||h|| denote the diameter corresponding
to this subdivision. For all t € [t;, ti;e] we define

(2.1)n Sit) = 3 At - t)¥,
keK

where K is the set of all n-dimensional multi-indices k (0 < k < 2e) with
k;j = 2 for at most one j; that is, S; is a special polynomial of degree at most
n + 1, which is quadratic polynomial in each variable. Further the unknown

coefficients Agk) are to be chosen satisfying the conditions:

Si(ti'H) = Uit if 0 < 1 <e
(2.2)n -

ajSi(ti.H) = ul_H y lf 0 S 1 S e, (l)J =0.
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The n-quadratic spline function S (corresponding to the knots {t;} and the
systems {u;} and {ui(ej)}) is defined on R™: for all t € [tj, tise) let

(2.3)n S(t) = Si(t).

Theorem 2.1. [7] There ezists a unique n-quadratic spline function S defined
by (2.1)n-(2.3)n, and it is continuous.

Let u : R®” — R be a function and we define for all i € Z™ and j =
1,2,...,n

(2.4), uj = u(t;)
and
(2.5)n u® = 9;u(ts).

It follows by the uniqueness part of the previous theorem, that the n-quadratic
spline function defined by the conditions (2.1),, — (2.5), satisfies the following
recursive formula for t € [t;, tije]

Si(n+1)(tl, ce. ;tn,tn-}-l) =
(2.6) = vp41S ,m“ (1, tn) + (1 = vp31) S (s . o)+

1 - (2e
—_ — . u+l) .
+2(vn+1 1vp41 E I l w;A Uitl-enqr)
o<i<e  j=1
lng1=0

(t:)J (t,)J o — { vj ‘li ;=1
h; ! 1-v, if 1j=0
forallj=1,...,n,n+1.
The following theorems show the approximating properties and the stabil-
ity of the spline construction.

where

Theorem 2.2. [7] Let u : R®* — R k-times (k = 0,1,2) continuously
differentiable. Then the n-quadratic spline function S defined by the conditions
(2.1)n — (2.5)n satisfies

[u(t) = SO < cx 3 hu(d; D)

j=1
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for all t € R™ with ¢y = %, = % and ¢y = %, where d denotes the diameter
of the subdivision.

Theorem 2.3. Let S and S denote the spline functions defined by (2.1), —
(2.5)n corresponding to the systems {u;} and {u;}, respectively, where |u;—u;| <

€ holds for alli. Then we have

|S(t) = $(¢)] < (n +

N W

)

o™

for all t in R™.

3. Numerical quadrature by n-quadratic splines

In this section we show, that we can approximate the integral of the
function u on the bounded domain [a, b] using the n-quadratic spline function
defined by the conditions (2.1), — (2.4),.

If [a,b] bounded then we have to modify our spline function on the ’left
side’ of the domain because there aren’t function values such as e.g. u_e. Let
us define

(3.1) Si(t) = Siqe(t) for all t € [t;, tite), if (i); = 0.
In the two-dimensional case it means that for all 7, j
So,;j(t,s) =51;(t, s),
Sio(t,s) =Sit,s),
So,0(t, s) =S1,1(t, s).
It is easy to see, that
Si(ti-1) = ui-1 for 0 <1<e,

so the modified spline function interpolates at the knots of the ’left side’,
too. Using this modification, our Spline function will be continuous on the
whole [a, b] and the estimations in the Theorem 2.2 are valid also in this case,
because they are based on the Taylor formula and so they are valid always in
a neighbourhood of a knot.

Theorem 3.1. If the function u : [a,b] C R® — R is k-times (k = 0,1,2)
continuously differentiable and S is the n-quadratic spline function defined by
(2.1)n — (2.5),, then

|/[.'b] u(t)dt — /[a,b] S(t)dtl <c ('1:1(51 - az)) ;h}‘w(d; 8;11)
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with ¢g = %, ¢ = % and c; = %, where d denotes the diameter of the
subdivision.

Proof. For the difference of the the integrals we have

| /[..,.,] u(e)dt - /[ , S0 < L, )= Steae <

< I1s - a) s, 1u(0) - 50

j= in(a,

so the statement is a simple corollary of the Theorem 2.2.

The recursive formula (2.5) for the n-quadratic spline can be written in
the following form:

SP (.t tagr) = STty o tn) + a1 ACTHISI (L )+

n

1 .
(3.2) +5(Uns1 = 1vns Y (H ,,;.:)A(nne,,“)ui_%w
0<I<e  j=1
In+1=0
where
t); — (ti);
‘Uj:()—"hf(i, ]:l,,n+l
3

For the sake of simplicity let us denote by
T = [ts, tige]

the subrectangle belonging to the knot t; in the n-dimensional case and

1= /(,., Sty ... ta)dty .. dtn.
TI

Now let us integrate the recursive formula (3.2) over T-l("'H)

1 n
Ii(:+l) = Ehn+l(1i(,'i') +1{3) )—-

iyi+eﬂ+l

n+1 n
(3.3) _Tli(H hf) Z (H l; -1!- I)A(Hzenﬂ)ui"enﬂ =
ji=1 0<I<e j=1 J
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n4l
hn+1 (Ii(.'i‘) + Ii(.,i‘-z-enu) - 1_12 ' 2i" ( H hj) Z A(zen“)““’l-enﬁ .
j= o<lI<e
Ing1=0

DN =

Finally the n + 1-dimensional quadrature formula gives the following approxi-
mate value

/ ut)dtn [ S()de=Y IGHY,
(a,b) (=,b) '

i
where at the edge of the domain we have

G =168, i @) =0,

that is,for 1< j<n

n+1l
Ii(,’:-t:,) = 2h (Il('i?-e Il('i‘le',-}-eu“) 12 2,; (H J)

. [3A(2°"+’)Ui—en+, - A(2°"+’)Ui+e,-—e,.+, + Z A(2°"+‘)“i+l—en+,] ,

0<I<e
lj=ln41=0
and for j=n+1
n+l
Ii(""tel) = _h (3Ii(-") Ii('l‘lenﬂ) (H h ) Z A(zen+l)ui+l—°n+1'
J 0<I<e
ln41=0

In the special case, n = 1, for the integral of the function f : [a,0] = R
on the interval [a,b] we have the following formula:

/ f(t)dt ~ / S(t)dt = %"‘z—: (5fi+1 +8fi — f-'-1) + %(Wo +8f1 - fz) =

m-1

= %(4;0 +3f1 + fmet +5fm) +hY_ £,

i=1

where h = (b — a)/m.

In the two-dimensional case applying (3.3) and the one-dimensional for-
mula, we have fori> e
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and

hl
I = 21 (5“-'+1,j +8uj — Uiy i + 5ty ju1 +8ui iy — “-'—1.:'+1) -
_M1
122

At the ’left side’ of the domain we use the respective formulae. Finally, for the
integral of the function u : [a,b] — R on [a,b] we have

b, b,
j u(t)dt = / / u(tl,tz)dtldtg ~
[a,b] a; Jaj

my—-1my-1
hl 1 2

2 i=1 j=1

(A(ze"+l)ul'—1,j + A(ze”+l)ui—l‘j+l) .

(4U-'+1.j+1 + Tig1j = Yig1,j-1 + T8 ju1+
+10u; j — tij-1 = Yim1j41 = u.-_l,,-) +

Al 3
+§ ; (5u.'+1,1 + Suip1,0 — 3ui 2 + 14ui 1 + Sui o+ ui1 2 — 3“i—1,1)+

+—= (—302,j + ugj_1 + 5uy j41 + 14uy; — 3uy j_1 + Sug j41 + 5“0,j)+

hl
+§Z(—‘4u2,2 + Tuz,) — Suz,0 + Tuy 2 — 6uy ) + 15u; 0 — Sug,2 + 15u0.1),

where h = (b1 — a1)/my, | = (b2 — a2)/m;.
As an application let us compute the approximate value to the integral

(&)
/01 /_01 ze*¥dzxdy,

which is equal to e~! = 0.367879441171442. In the Table 3.1 we show some
approximate values and their difference from the exact value, where we divided
the interval [0,1] into N, the interval [—1,0] into M subintervals, that is, h =
1/N,1=1/M.
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Approximate value

Error

10
10
15
20
20
25
25
30
40
50

10
15
10
20
25
20
25
30
40
50

3.67911300063299E — 0001
3.67907972569944 E — 0001
3.67892495763528 E — 0001
3.67883426852922F — 0001
3.67883110631365E — 0001
3.67881807432383F — 0001
3.67881482924201 E — 0001
3.67880623238393E — 0001
3.67879940154699 E — 0001
3.67879696753205E — 0001

—3.18588918568157E — 0005
—2.85313985015072E — 0005
—1.30545920853457E — 0005
—3.98568147919699E — 0006
—3.66945992226817E — 0006
—2.36626094021682E — 0006
—2.04175275843142E — 0006
—1.18206695099801 £ — 0006
—4.98983256897541 E — 0007
—2.55581762589169E — 0007

Table 3.1

Another possible approach is to minimize the number of the necessary
operations (multiplications) but having the same error estimates as before. In

order to do this we redefine the values u &) at the ’left’ endpoints by the

formula
Ul4e, —Ul-e . .
() - i) #0
“—-J—'*;,J'"‘ if (i); = 0
where h; = 21’;—:1 (G=1,...,n).

In the one-dimensional case we have
b b
h
/ u(t)dt z/ S(t)dt = 1—2—(5uo+13u1+12(u2+- . -+um..2)+13um_1+5um),

(b—a)/m.

In the two-dimensional case we have

where h =

n, n3

by pba by pbs
/ / tl,tz)dtldt2~/ S(ty, 13) dtldtgz—ZEB,J

1 Ja3 i=0 j=0

with the following matrix of the coefficients B; ;

/ 4 11 10 10 10 11 4 \
28 26 26 26 28 11
10 26 24 24 24 26 10
10 26 24 24 24 26 10
10 26 24 24 24 26 10
28 26 26 26 28 11

\4 11 10 10 ... 10 11 4/



Multiple quadrature formulae by splines 117

where h = (b1 — a1)/my, | = (b — az)/ma.
In the three-dimensional case we have
b n, nz nj
hihohs
)t~ =253 3" Bijaui
/a u(t) ) o k—oB kWi 5k

where hj = (bj — aj)/n; (j.=1,2,3) and the coefficients B; j :

{3 9 8 8 8 9 3\
9 24 22 22 ... 22 24 9
8 22 20 20 ... 20 22 8
8 22 20 20 ... 20 22 8
for k =0 and k = nj: S . _— . .
8 22 20 20 20 22 8
9 24 22 22 22 24 9
\3 9 8 8 8 9 3/
9 24 22 22 ... 22 24 9 \
24 60 56 56 ... 56 60 24
22 56 52 52 ... 52 56 22
22 56 52 52 52 56 22
for k=1 and k=nz3—1: : . . . . . .
22 56 52 52 ... 52 56 22
24 60 56 56 ... 56 60 24
\9 24 22 22 ... 22 24 9
/ 8 22 20 20 ... 20 22 8 \
22 56 52 52 ... 52 56 22
20 52 48 48 ... 48 52 20
20 52 48 48 ... 48 52 20
and for 1<k <nz-1: . : . —_— . : .
20 52 48 48 ... 48 52 20
22 56 52 52 ... 52 56 22
\ 8 22 20 20 ... 20 22 8 /

Let us see the following examples ([9]):

1 1 g1
Ji = / / / exp(sin z sin y sin z)dzdydz ~ 8.081734937,
-1J-1J



1 1 g1
Jy = / / / (44 z+ y+ 2z)" 'dzdydz ~ 2.152142833,
-1J-1J4

and using the above method we’ve got the results of Table 3.2.

Margit Léndrd

np=nz=n3 S Sa
5 8.080571520 | 2.156156393
10 8.081540333 | 2.152686809
15 8.081687336 | 2.152312424
Table 3.2

where S; and S, are the approximations for J; and Js, respectively.
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