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THE CHEBYSHEV COEFFICIENTS OF GENERAL-
ORDER DERIVATIVES OF AN INFINITELY
DIFFERENTIABLE FUNCTION IN TWO OR

THREE VARIABLES

E.H. Doha (Giza, Egypt)

Abstract. The tensor product of orthogonal Chebyshev polynomials is used
to approximate a function of more than one variable. Expressions relating the
Chebyshev coefficients of general-order derivatives of an infinitely differentiable
function in two or three variables in terms of the original Chebyshev coefficients
of the function are stated and proved.

1. Introduction

Spectral methods based on double Chebyshev polynomials for solving numer-
ically partial differential equations have been used by many authors, among them,
Dew and Scraton [2], Doha [3], Gottlieb and Orszag [5], Haidvogel and Zang [6)
and Horner [7]. For solving high-order partial differential equations, for example
the biharmonic equation, the Chebyshev coefficients of high derivatives of infinitely
differentiable functions are required. In this paper general formulas for these coef-
ficients are stated and proved. In Section 2 we give some properties of the double
Chebyshev series expansions and in Section 3 we describe how they are used to
solve Poisson’s equation in two variables with the tau method as a model problem.
In Section 4 we state and prove the main results of the paper which are three
expressions for the coefficients of general order partial derivatives of an expansion
in double Chebyshev polynomials in terms of the coefficients of the original expan-
sion. Extension to expansion in triple Chebyshev polynomials is also considered in
Section 5.

2. Properties of double Chebyshev series expansions

Let u(z, y) be an infinitely differentiable function defined on the square S (—1 <
z,y < 1). Then it is possible to express

(1) u(z,y) = Z Z ”amnTm(z)Tn(y))
n=0m=0
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where T,,(z), Tn(y) are Chebyshev polynomials of the first kind defined by
T (z) = cos(mcos™!z), T,(y) = cos(ncos™'y).

Basu [1] refers to series (1) as a ”bivariate” Chebyshev series expansion. The
double primes in (1) indicate that the first term is lago; @mo and ap, are to be

3
taken as la,o and %ao,, for m,n > 0 respectively. Further, let

2

DEDIu(z,y) = ulP(z,y) = Y Y "B DT, (2)Ta (v)

n=0m=0

note here that we denote the Chebyshev expansion coefficients of the p — th and

q — th partial derivatives of u(z,y) with respect to z and y respectively by a(p q).

Following Orszag [9] and using the expressions (see, Fox and Parker [4])

1
(2) (I) TD Tm+1(13) - m—_lD;Tm_l(I), m > l,

3 2To(0) = — DTt (8) - @, >l

with the assumptions that

(e o] [e e]
D, Z Z "aP=LOT (2)Ta(y) = E Z "a®T, (2)T,(y),
n=0m=0

n=0m=0

D, EZ“G(PG DT, (2)Ta(y) = ZZ" (M)T ()T (y)

n=0m=0 n=0m=0

it is possible to derive the expressions

(4) abf) | —alf) = 2ma8 0, p>1,
(5) f::qu) 11— (p,’:)+1 =2nal"Y, ¢> 1.

Repeated application of (4) keeping n and g fixed (see, Phillips et al. [10]) yields

(6) as,’:;l") =2 E(m +2i — l)ag;;‘fq_)lln, p>1
1=1
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and the same with (5) keeping m and p fixed yields

(e e)
(7) a9 =23 (n+2i-1aZ00) |, ¢>1.
i=1

3. The tau method for Poisson’s equation in two dimensions
Consider Poisson’s equation in the square S (-1 < z,y <1)

(8) D u(z,y) + Dju(z,y) = f(z,9) -1<z,y<1

with homogeneous Dirichlet boundary conditions

(9) u(z,y) =0 lz|=1]yl=1

and assume that both u(z,y) and f(z,y) are approximated by truncated double
Chebyshev series

(10) u(z,y) = ZE amnTm (2)Th (y),

n=0m=0

N M
(11) f(z, y) = E Z ”fmnTm(z)Tn(y)y

n=0m=0
then the Chebyshev tau equations for Poisson’s equation (8) are given by
(12) a9 + a0 = frnn 0<mM<M-2 0<n<N-2

while the Dirichlet boundary conditions (9) yield

M
(13) > (&) amn =0, 0<n<N,

m=0

N
(14) E (£1)amn = 0, 0<m< M.
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The 2M + 2N + 4 boundary conditions given by (13) and (14) are not all linearly
independent; there exist four linear relations among them, namely

N M
(15) 33 ME)™(ED) ama = 0.

n=0m=0

Thus, equations (12), (13) and (14) give (M + 1)(N + 1) equations for the
(M + 1)(N + 1) unknowns a¢m, (0 < m < M,0 < n < N). The coefficients

(2,.0) and a(0 ?) of the second partial derivatives of the approximation u(z,y) are
related to the coefficients ap, of u(z,y) by invoking (6) with p = 1 and p = 2,
and (7) with ¢ = 1, and ¢ = 2 respectively. In the next section we show how the
coefficients of any derivatives may be expressed in terms of the original expansion
coefficients. This allows us, for example, to replace agn) and a(o D in (12) by an
explicit expression in terms of the a,;,. In this way we can set up a linear system

for amn (0 < m < M,0 < n < N) which may be solved using standard algorithms.
4. The theorem and its proof

Let u(z,y) be an infinitely differentiable function defined on the square S (—

z,y < 1). The coefficients a(p 9 of an ezpansion of double Chebyshev polynomaals

of the p — th and q — th partial derivatives of u(z,y) with respect to z and y

respectively are related lo the coefficients a(,,,,:’"aE,’:,?) and the original coefficients

amn by:

(16) ahl =
2P (z+p 2)'(m+z+p 2)! o (0,
T h-N& E (G- Dli(m+i-1) (m+2i+p=a iy 00 P21,
(17) ang =

0
(n+2j+q— 2)55n),Lz,-+q_z, g1,

G+g-2)!(n+j+q-2)!
(1)-1)'Z G-D'(n+j-1)

(18) algt) =

2r+e = (i +p =D (m+i+p—DG+qg— 2 (n+j+q—2)
girEn Iy PP (= Dim+i- D= D+ - 1) "
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X(M4+2i+p—2)(n+2j+49—2)ams2itp-2,n42j+9-2, P q> 1,

for allm;n > 0.
In order to prove the theorem the following two lemmas are required:

M
. (M-—i+p-1)!(m+i+M+p-2)!
(19) ;(mm_ g (M —i)(m+i+M—-1) =
_1(M+p—1D(m+M+p-1)
T M-Dim+M-DI

m2>0,p2>1,

N .
N—-J+q—1)'(n+j+N+q—2)!_
(20) ;n_*-?] (N=)(n+j+N-1) -
_l(N+q-—l)!(n+N+q—l)!
T g (N=D(n+N-=-1)!

nZO,qu

The interested reader is referred to Karageorghis [8] for the proof of any of these
two lemmas.

Proof of the theorem

Firstly, we prove formula (16). For p = 1, application of (6) with p = 1 yields
the required formula. Proceeding by induction, assuming that the relation is valid
for p (keeping n and ¢ fixed), we want to show that,

(21) affyh? =

7+ X (i+p— 1) (m+i+p—1) , ©.0)
Y ; G- Dimyi—nr mH 2t P Danian, 1.
From (6) replacing p by p + 1 and assuming the validity of (16) for p,
(22)
ortt 2 (k+p-2)!(m+2i+k+p-3)
(p+1,9) — 2i—1
m (p—l)'zm+ ! {Z (k= 1)(m+2i+ k- 2)! X

x(m+2i+2k+p- 3)argfzi+2k+p—3,ﬂ}'
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Let i + k = M + 1, then (22) takes the form
(23)

gp+1 (k+p—2)(m+2i+k+p—3)
(p+1.q) — -
(p—U'z:{ 2: (m+2i-1) k—Dim+2i+k-2)!

L,k=1
itk=M41

x(m+2M+p-— 1)“5:-':%M+P—1,"}

which may also be written as

oo

2pr+! —i+p-1D(m+i+M+p-2)
(p+1,9) — -
Gmn - Z{E(m”’ D —dim+it M=) }X

x(m+2M +p - l)asgf%Mﬂ_l’n.
Application of lemma (19) to the second series yields equation (21) and the proof of
formula (16) is complete. It can also be shown that formula (17) is true by following
the same procedure with (7), keeping m and p fixed. Formula (18) is obtained
immediately by substituting (16) into (17) or (17) into (16). This completes the
proof of the theorem.

5. Extension to triple Chebyshev series expansions

Let u(z,y,2) be an infinitely differentiable function defined on the cube
C (-1 < z,y,2 <1). Then it is possible to express

oo o0 00

(24) u(z,y,2) = Z Z E' aemnTe(2) T (y)Tn (2).

n=0m=0 £=0

Further, let
DEDID u(z,y,z) =

(25)
=P,y = 30 3 3 el T T ()T (2)
n=0m=0¢=0

Triple primes indicate that the first term is taken with factor 1/8; coefficients with

two zero subscripts and with one zero subscript among the three subscripts ¢, m

and n are to be taken with factors 1 and % respectively. It can be easily shown

1
that

(26) a(P:Q-") _ a(PnQ.') - 2[0(1’ l,q, ") p 2 l,

{—-1,mn {4+1,mn fmn
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(27) o) =i = 2mat T, g2,
(28) (P'.’:l»;)_ aEP";I ;)+ _ 2na(p q r- 1)1 r> 1,
which, in turn, yield
(29) aftm) =23 (042 - DalL i L P21,
i=1
o0
. 1,r
(30) agfnir) = 22(7’" + 2] - l)agpn‘l’+2] )1 n’ q Z 1)
j=1
(31) a8 =23 (n+ 2k = Naflr i, 21
k=1

Now, we state the following theorem, which is to be considered as an extension of
the theorem given in Section 4.

Theorem. The ezpansion coefficients agf,’ﬂl") of (25) are related to the coef-
ficients with superscripts (0,q,7),(p,0,7),(p,q,0),(0,0,7),(0,9,0),(p,0,0) and the
original expansion coefficients aymn of (24) by:

®) g =

2r (i+p-2)(L+i+p—2)! . 0,q,r

-1 & E G-D'+i-1) (£+2l+p_2)a§+gi-2p—2,m,n’ p>1,
(33) agt) =

(Tn+2]+q z)alm-:Z)]{-q 2,n) qZ 1)

Z(J+¢I—2)'m+.7+q 2)!
q—l

o G=Dim+j-1)

(34) a\Por)

Qmn

2" Z(k+r— 2 (n+k+r-2)
(T—l)'

(p,9,0)
(k - 1 '(Tl + k - 1) (n +2k+ r= 2)alf,ng,n+2k+r_2’ r Z 1’
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(35) ag” =
PH (4= D+ itp- gD m+i+q-2)
T - Da- 1)',;; G- DI+ i=DIG = Di(m+j— 1)
(0,0,r)

x([+21+p—2)(m+2]+q 2)al+21+p 2,m+2j49-2,n) quz 1’

(36) at) =

op+r G+p—-2)+i+p— 2)'(lc+r——2)!(71-}-Ic+1'—2)!><
(p—l)'r—l)'kz;’z; GE-D'+i-DY(k-DY(n+k-1)

Xx(E+2i4+p=2)(n+2k+7r—2)alyhD o okiees BT

(37) abidr) =

99+r G+g—-2)(m+j+q-2)(k+7- )l(n+k+,._2),
(‘1‘1)'(’—1)';,21 G-Dim+j-Di(k=1)!(n+k—1)

. ,0,0
x(m+2j+q—2)(n+2k+r— 2)a$f’m+gj+q_2,n+2k+r_2, q,r > 1,

(38) agt”) =
optatr = (=)l +i+p-2)(+q—2)
(p—l)'(q—l)'r—l)'gzz 1—1)'(f+l—1)'(1—1) *

x(m+j+q—2)!(lc+r-—2)!(n+2+r—2)!
(m+j—-Dlk—=1)(n+k—1)

X(l+2i+p—-2)(m+2j+q—2)(n+2k+r-2)x

j=1li=1

XA42i4p—2,m+2j+9—2,n+2k+r—2, p,q, 721,

forall £,m,n > 0.
Outlines of the proof

The proof of formulas (32), (33) and (34) can be obtained by induction on p, ¢
and r respectively. Substituting (32) into (33) and (34); and substituting (33) into
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(34) yield immediately formulas (35), (36) and (37) respectively. Formula (38) is
obtained by substituting (34) into (35), or (33) into (36), or (32) into (37).
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