ON THE EXISTENCE OF MAXIMAL INPUT-OUTPUT SYSTEMS

Luz Solé (Mérida, Venezuela)

Abstract. The main objective of this paper is to prove the existence of maximal input-output systems by using geometric methods.

Introduction

The basic task of engineering is to translate performance specification into project from which a system can be built. When one builds a new system, the performance requirements of the system given by an input-output description must be specified. That became clear when Kalman [2] proved a theorem which showed that the input-output description reveals only the controllable and observable part of a dynamical system and that this part is a dynamical system with the smallest state-space dimension among systems having the same input-output.

This paper is based in part on discussions that took place in the article [4], where we arise a problem about the existence of maximal input-output systems, that is, we are interested in input-output systems which have maximal canonical phase-space. Therefore the problem can be considered as a max-min problem. The used fundamental concepts are the semigroups of inputs and the input-output mappings. The concepts allow us to study general discrete-time discrete-systems.

The following notational conventions will hold throughout this work.

 Ω will denote an arbitrary set of input values and Y an arbitrary set of output values. $I(\Omega)$ will denote the set of inputs; $u \in I(\Omega)$ can be written in the following manner: $u = (u(n), \ldots, u(1))$. For any $u \in I(\Omega)$ |u| is the length of u. The empty input will be denoted by θ and in this case $|\theta| = 0$. $I(\Omega)$ is a semigroup with respect to the concatenation, which is defined by $vu = (v(m), \ldots, v(1), u(n), \ldots, u(1))$.

For us an input-output system is a transformation

$$P:I(\Omega)\to Y.$$

We recall the definition of Nerode equivalence: $u, v \in I(\Omega)$. $u \sim v$ if and only if $P(\omega v) = P(\omega u)$ for all $\omega \in I(\Omega)$.

Luz Solé

We say that an input-output system $P: I(\Omega) \to Y$ is maximal if and only if the Nerode equivalence is the identity relation, that is, if $u \neq v$ $u, v \in I(\Omega)$, then there exists an input $\omega \in I(\Omega)$ satisfying

$$P(\omega u) \neq P(\omega v)$$
.

Our problem is the existence of that input-output system. We consider the case when Ω is an arbitrary set of cardinality no greater than the continuum and $Y = \mathbb{Z}_2$, $Y = \mathbb{Z}_2^X$, where $\mathbb{Z}_2 = \{0,1\}$.

Theorem 1. There exists a maximal input-output system

$$P:I(\mathbb{Z}_2^k)\to\mathbb{Z}_2.$$

Proof. Let $u \in I(\mathbb{Z}_2^k)$. Then u can be identified by the finite sequences $(u_1, u_2, \ldots, u_k) \in \stackrel{k}{\times} I(\mathbb{Z}_2)$ of inputs and $|u| = |u_i|, i = 1, \ldots, k$.

Let $u \in I(\mathbb{Z}_2)$. We associate u with the interval

$$I_{u} = \left\{ \sum_{i=0}^{n-1} u(i+1)2^{i-n}, \quad \sum_{i=0}^{n-1} u(i+1)2^{i-n} + 2^{-n} \right\} \subset [0,1].$$

Now we associate $u \in I(\mathbb{Z}_2^k)$ with the interval $I_u = \underset{i}{\overset{k}{\stackrel{}{\sim}}} I_{u_j} \subset \underset{i}{\overset{k}{\stackrel{}{\sim}}} [0,1].$

The inclusion $I_{\omega u} \subset I_u$ holds due to the construction for all $u, \omega \in I(\mathbb{Z}_2^k)$. It is also obvious if $u \neq v$ then $I_u \neq I_v$.

We have to prove that there exists a $P: I(\mathbb{Z}_2^k) \to \mathbb{Z}_2$, such that if $u, v \in I(\mathbb{Z}_2^k)$ and $u \neq v$, then there exists $\omega \in I(\mathbb{Z}_2^k)$ such that

$$P(\omega u) \neq P(\omega v)$$
.

Let $u, v \in I(\mathbb{Z}_2^k)$, $u \neq v$. The set $I(\mathbb{Z}_2^k)$ is countable therefore the set of all pairs of $I(\mathbb{Z}_2^k)$

$$A = \{(u, v) : u, v \in I(\mathbb{Z}_2^k), u \neq v\}$$

is also countable. Let A be ordered in the sequences $(u^1, v^1), (u^2, v^2), \ldots$ such that

$$I_{n} \setminus I_{n} \neq \emptyset$$
.

Define another sequence ω^1 , ω^2 ,... of the inputs belonging to $I(\mathbb{Z}_2^k)$, such that

$$I_{\boldsymbol{\omega}^1} \subset I_{\boldsymbol{u}^1} \setminus I_{\boldsymbol{v}^1},$$

b) if $\omega^1, \ \omega^2, \dots, \omega^r$ are given, then consider ω^{r+1} satisfying the relation

$$I_{\omega r+1} \subset I_{\omega r u r+1} \setminus I_{\omega r v r+1}$$
.

The intervals I_{ω^r} satisfy the inclusion $\ldots \subset I_{\omega^{r+1}} \subset I_{\omega^r} \subset \ldots$ by the construction, therefore by the compactness of the intervals there exists (a unique) $t_0 \in \bigcap I_{\omega^r}$.

Then the system

$$P:I(\mathbb{Z}_2^k)\to\mathbb{Z}_2$$

will be given by

$$P(u) = \begin{cases} 1, & \text{if } t_0 \in I_u \\ 0, & \text{if } t_0 \notin I_u. \end{cases}$$

This system has the announced property. Indeed, if $u, v \in I(\mathbb{Z}_2^k)$, $u \neq v$, then (u, v) or (v, u) equals a pair $(u^r, v^r) \in A$. Suppose that $(u, v) = (u^r, v^r)$. Then the element $\omega = \omega^{r-1}$ satisfies the relation $t_0 \in I_{\omega^r} \subset I_{\omega^{r-1}u^r} \setminus I_{\omega^{r-1}v^r}$ and consequently

$$P(\omega u) = P(\omega^{r-1}u^r) = 1,$$

$$P(\omega v) = P(\omega^{r-1}v^r) = 0.$$

that is, $P(\omega u) \neq P(\omega v)$.

The following theorem is more surprising, because Ω is an arbitrary set of cardinality no greater than the continuum, that is, the input semigroup $I(\Omega)$ can be a continuum.

Theorem 2. Let Ω be an arbitrary set of cardinality no greater than the continuum. Then there exists a maximal input-output system

$$P: I(\Omega) \to \mathbb{Z}_2$$
.

Proof. We shall prove Theorem 2 for Ω being finite, countable and continuum.

a) Let Ω be a finite set of cardinality r. Then we can give a relation among the finite $(0, 1, \ldots, r-1)$ valued sequences and the r-adic subintervals of [0, 1]. Let $u = (u(n), \ldots, u(1))$. Then u will be associated to the interval

$$I_{\mathbf{u}} = \left[\sum_{i=0}^{n-1} u(i+1)r^{i-1}, \quad \sum_{i=0}^{n-1} u(i+1)r^{i-1} + r^{-n} \right] \subset [0,1].$$

It is obvious if $u \neq v$, $u, v \in I(\Omega)$, then $I_u \neq I_v$. Hence we can follow the proof of Theorem 1.

b) Let Ω be countable. Then we can suppose that $\Omega = \mathbb{N}$. First of all we give a relation among the finite sequences $u = (u(n), \dots, u(1)) \in \mathbb{N}^n$ and certain closed subintervals of [0, 1]. The $u \in I(\Omega)$ will be associated to the interval

$$\left[\frac{1}{2^{u(1)}}\left(1+\frac{1}{2^{u(2)}}\left(1+\ldots+\left(1+\frac{1}{2^{u(n)}}\right)\ldots\right)\right),$$

$$\frac{1}{2^{u(1)}}\left(1+\frac{1}{2^{u(2)}}\left(1+\ldots+\left(1+\frac{1}{2^{u(n)-1}}\right)\ldots\right)\right)\right]$$

and $I_{\omega u} \subset I_u$ for all $u, \omega \in I(\mathbb{N})$.

It is evident that if $u \neq v$, $u, v \in I(\mathbb{N})$, then $I_u \neq I_v$. Then we can follow that proof of Theorem 1.

c) If Ω is continuum, then we can assume that $\Omega = (\mathbb{Z}_2^k)^{\mathbb{N}}$. According to Theorem 1, there exists a maximal input-output system

$$P:I(\mathbb{Z}_2^k)\to\mathbb{Z}_2$$

It is obvious that for each $n \in \mathbb{Z}_+$ there exists a number $\alpha(n) \in \mathbb{N}$ so that for each $u, v \in I(\Omega)$ satisfying the inequalities $u \neq v$, $|u|, |v| \leq n$, there exists $\omega \in I(\mathbb{Z}_2^k)$, so $n < |\omega| + |u|, |\omega| + |v| \leq \alpha(n)$ and $P(\omega u) \neq P(\omega v)$.

The second inequality can be fulfilled by the finiteness of the set of inputs with $|u| \le n$; the first one follows from the fact that there exists an infinite sequence of $\omega_1, \omega_2, \ldots$ which distinguish a pair $u \ne v$.

Define the number $K_{i,j}$, $i=0,1,2,\ldots,j=0,1,2,\ldots,i+1$ by the following recurrency

$$K_{0,1} = 0,$$

 $K_{i+1,1} = K_{i,i+1} + \alpha(K_{i,i+1}),$ $i = 0, 1, 2, ...,$
 $K_{i,i+1} = K_{i,i} + \alpha(K_{i,i}),$ $j = 1, 2, ..., i.$

Now, for $\mathbb{N} = \{1, 2, \ldots, \}$, $(\mathbb{Z}_2^k)^{\mathbb{N}}$ denote the set of all sequences of elements of \mathbb{Z}_2^k . For $u \in (\mathbb{Z}_2^k)^{\mathbb{N}}$ and $j \in \mathbb{N}$, let u_j denote the j-th element of u. Let $u \in (\mathbb{Z}_2^k)^{\mathbb{N}}$. Then $u_j(i) \in \mathbb{Z}_2^k$ for all $j \in \mathbb{N}$, $i = 1, \ldots, |u|$. Thus u can be identified by the sequences $(u_1, u_2, \ldots) \in \underset{1}{\overset{\infty}{\times}} I(\mathbb{Z}_2^k)$ of inputs, where $|u_j| = |u|$ for all $j \in \mathbb{N}$ and $u(i) = (u_1(i), u_2(i), \ldots) \in (\mathbb{Z}_2^k)^{\mathbb{N}}$. Define the input-output mapping

$$P:I(\mathbb{Z}_2^k)^{\mathbb{N}}\to\mathbb{Z}_2$$

by

$$P_0(u) = \begin{cases} P(\theta), & \text{if } u = \theta \\ P(u_1), & \text{if } u \in \bigcup_{i=1}^{\infty} \{u : K_{i-1,i} < |u| \le K_{i,1}\} \\ P(u_j), & \text{if } u \in \bigcup_{i=1}^{\infty} \{u : K_{i,j} < |u| \le K_{i,j+1}\}. \end{cases}$$

We shall prove that this P_0 is maximal input-output system.

Let $u, v \in I(\Omega)$ be such that $u \neq v$. Then there exists a $j \in \mathbb{N}$ so that $u_j \neq v_j$. If j = 1, then there exists an $i \in \mathbb{N}$ with $K_{i-1,i} \geq |u|, |v|$. By the maximality of P and by the definition of $K_{i-1,i}, K_{i,1}$ there exists an input $w_1 \in I(\mathbb{Z}_2^k)$ satisfying the relation

$$K_{i-1,i} < |\omega_1| + |u|, |\omega_1| + |v| \le K_{i,1}, \quad P(\omega_1 u_1) \ne P(\omega_1 v_1).$$

If j > 1, then there exists an $i \in \mathbb{N}$ with $K_{ij} \geq |u|, |v|$. By the maximality of P and definition of K_{ij} , there exists an input $w_j \in I(\mathbb{Z}_2^k)$ satisfying:

$$K_{ij} < |\omega_j| + |u|, |\omega_j| + |v| \le K_{i,j+1}, \quad P(\omega_j u_j) \ne P(\omega_j v_j).$$

Now we define the input $\omega \in I(\Omega)$ by $\omega = (0, \dots, 0, \omega_j, 0, \dots)$. Then according to the definition of P_0 we obtain the relation $P_0(\omega u) = P(\omega_j u_j) \neq P(\omega_j v_j) = P_0(\omega v)$.

Therefore u and v are distinguishable, i.e., P_0 is maximal. Thus, Theorem 2 is proved.

Corollary. Let X be an arbitrary set and Ω as in Theorem 2. Then there exists a maximal input-output system

$$q_0: I(\Omega)^X \to (\mathbb{Z}_2)^X$$
.

Proof. Let q_0 be given by component

$$q_0(u) = \{x \to P(u(x)), x \in X\},\$$

where P is the maximal input-output system of Theorem 2. We shall prove that q_0 is maximal.

Let $u, v \in I(\Omega)^X$, $u \neq v$. Then there exists an $x \in X$ satisfying $u(x) \neq v(x)$, u(x), $v(x) \in I(\Omega)$. Therefore, there exists a $\omega_0 \in I(\Omega)$ such that $P(\omega_0 u(x)) \neq P(\omega_0 v(x))$.

Define an input $\omega \in I(\Omega)^X$ by

$$\omega(y) = \begin{cases} 0 & \text{if } y \neq x, \\ \omega_0 & \text{if } y = x. \end{cases}$$

Thus

$$q_0(\omega u)(x) = P(\omega_0 u(x)) \neq P(\omega_0 v(x)) = q_0(\omega v)(x)$$

i.e. $q_0(\omega u) \neq q_0(\omega v)$.

Remark. Let Ω be an arbitrary set of cardinality greater than the continuum represented by the power $\Omega = \mathbb{Z}_2^X$. Then as a consequence of Corollary the following statement is obtained:

Let Ω be an arbitrary set of cardinality greater than the continuum. Then there exists a maximal input-output system

$$q:I(\Omega)\to\Omega.$$

We have just shown that there exists a maximal input-output system where the phase-space of the canonical realization is the set of the inputs, that is the Nerode classes contain only one element.

I am grateful to Prof. F. Szigeti for calling my attention to the problem and his helpful suggestions.

References

- [1] Kalman, Arbib and Falb, Topics in mathematical system theory, McGraw-Hill Book Company, 1969.
- [2] Kalman R.E., Canonical structure of linear dynamical systems, *Proc. Math. Acad. Sci. U.S.*, 49 (1962), 596-600.
- [3] Nerode, Linear automaton transformations, Proc. Amer. Math. Soc., 9, 541-544.
- [4] Solé Luz, On feedback universality of discrete systems (submitted).

(Received March 10, 1991)

Luz Solé

De Los Andes University

Mérida, Venezuela