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VIABILITY THEOREMS ON STRONGLY
SLEEK TUBES

Z. Kannai (Budapest, Hungary)
Abstract. In this paper we prove the existence of viable solutions to convex
and nonconvex right-hand side differential inclusions with a time-dependent vi-
ability set. The time-dependence is related to some continuous differentiability.

1. Introduction

In this paper we give a solution to the viability problem

z(t) € P(t)
{ z'(t) € F(t,z(t)
:L‘(O) = X9

(1)

when P is a time-dependent viability set. Viability theorems with a constant
viability set are proven by Haddad [11] for autonomous differential inclusions and
by Deimling [9], Ledyaev [16], Tallos [19] for nonautonomous inclusions with convex
right-hand side; and with nonconvex right-hand side by Goncharov [10], Colombo
[7] and Kénnai and Tallos [14]. We directly use the result of Colombo in [7] and
the result of Tallos in [19]. We shortly describe these results. We denote by F(X)
(resp. Feonv(X)) the family of the nonempty, closed (and resp. convex) subsets of
a Banach space X. Tk (z) denotes the Bouligand contingent cone to a subset K at
a point z. Ck(z) means the Clarke cone (definitions see in [3]). We denote by A
the o-algebra of Lebesgue-measurable sets in R, by B the Borel o-algebra (in R or
in a metric space, which is mostly a product of other metric spaces in this work),
by B (resp. clB) the open (resp. the closed) unit ball of a Banach space X.

Theorem 1 (Colombo). Let X be a reflezive Banach space, denote the
family of nonempty closed sets in X by F(X). Let us assume that

(a) K is a locally compact subset of X, zo € K is given;

(b) F:[0,1] x K — F(X) is a given set-valued map;

(c) F ts A x B-measurable;

(d) F(t,-) is lower semicontinuous (l.s.c.) on K for a.e. t € [0,1];
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(e) F is integrally bounded;
(f) F(t,z) C Tk (z) for a.e. t € [0,1] and every z € K.

Then there ezists a number 0 < T < 1 and an absolutely continuous function
z:[0,T] — X such that

z(t)
(2) z'(t)
z(0)

K for every te€(0,1];
F(t,z(t)) forae. t;
Zo.

rmm

Theorem 2 (Tallos). Let X be a finite dimensional Banach space, denote
the family of nonempty closed convez sets in X by Feony(X). Let us suppose that

(a’) K is a closed subset of X, zo € K 1s given;

(b’) F:[0,1] x K — Feonu(X) is a given set-valued map;
(¢’) F(-,z) is A-measurable for every z € K;

(d’) F(t,-) is upper semicontinuous (u.s.c.) on K for a.e. t;
(e’) F is integrally bounded;

(f) F(t,z)NCk(z) # 0 for a.e. t € [0,1] and every z € K.
Then for every T > 0 there ezists a viable solution to (2).

To be able to use these theorems, we have to make some remarks about measura-
bility. In order to do it, introduce a new definition.

Definition 1. Let K be a separable metric space. Define the set S := {A C
R x K : 3 B € B(R), A(B) = 0 such that A\(B x K) is Borel}.
It can be easily seen that S is a o-field on R x K. It can be also seen that AxBC S
because whenever A € A and B € B(K), there exists a set Ag € B(R) such that
Ao C A and A(A\Aq) = 0. Of course, the set Ag x B is Borel. Consequently, the
set Ax BES.

Proposition 1. Let X be a separable Banach space and K be a separable
metric space, F : [0,1] x K — F(X) be S-measurable and integrally bounded with
a function £ € L'[0,1]. Then there ezists a map F; : [0,1] x K — F(X) A x B-
measurable and integrally bounded and a Borel-measurable set A C [0, 1], A(A) =0,
such that for everyt € [0,1]\A and z € K 1t holds

Fi(t,z) = F(t,z).

Proof. Let (G;)ien be a countable basis of the space X. Denote

H; :={(r,y) €[0,1] x K : F(r,y) N G; # 0}.
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Since F is S-measurable, the sets H; € S. Then for every i there exists a set
[o.0]

Ai € B(R) such that A(A4;) = 0 and H;\(A; x X) is Borel. Denote A := |J A;.
i=1

Then A is Borel and A(A) = 0. Denote

_[Ftz) ifté¢ A
Rt z) = {g(t) B ifte A.

Let an open set G be given in X. Then there exists an index set P C N such that
G =U{G; :i € P}. Then
{(t,z) €[0,1]x K : Fi(t,z)NG # 0} =
={(t,z) € ([0,1\A) x K : F(t,) NG # O}V
U{(t,z) € Ax K :GNL(t)-clB # 0}.
The second member of the union is obviously A x B-measurable. Examine the first

one:

{(t,z) € ([0,1\A) x K : F(t,z)NG # 0} =
={(t,z): Ft,z)NG#ON\AXx K =

= Jit,2): F(t,2)NG:i # ONA X K =

i€EP
= J H\Ax K = | J(H:\A x K),
icP i€P

and the sets H;\(A x K) are obviously Borel. So the desired set is also Borel. By
this we have shown that the map F; is A x B-measurable.

2. Premilinaries

Consider a Banach space X. A set K € F(X) we call sleek if its Bouligand
cone as a map
T 1 K — F(X), 2+ Tx(2)

is 1.s.c. We note that Tk (z) = Ck(z) whenever K is sleek (see Lemma 10 in Ch.7
in [4]) where Ck(z) denotes the Clarke tangent cone. It follows that whenever K
is sleek, the cone Tk (z) will be convex.

Let a map P : [0,1] — F(X) be given. We will say that P is sleek if graph P
is sleek in the space R x X.

A set K is called boundedly compact if n-clB N K is compact for every n. We
note that if the set K in Theorem 1 is boundedly compact, then K is separable,
moreover the number T can be chosen equal to 1.
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We also need the idea of contingent derivative.

Definition 2. For every (t,z) € graph P and u € R denote
DP(t,z)(u) := {v € X : (u,v) € Tgrapnpr(t,z)}.

The map DP we will call the contingent derivative of the map P.

Definition 3. A map P : [0,1] — F(X) is called strongly sleek if it is sleek,
moreover there exists a constant M > 0 such that

DP(t,z)(1)N M -c1B # 0

for every t € [0,1) and z € P(t).
We get an interesting characterization of strongly sleek tubes by the following
proposition.

Proposition 2. A sleek map P : [0,1] — F(X) with a boundedly compact
graph is strongly sleek if and only if there exists a constant M > 0 such that for
every (t,z) € graph P there ezists a continuously differentiable selection ¢ from P
such that p(t) = z and ||¢'(t)|]| < M for every t€[0,1].

Proof. The necessity is obvious, because
¢'(t) € DP(t,z)(1),

DP(t,z)(1)NM -clB # 0.

Now consider a strongly sleek map P : [0,1] — F(X) with a boundedly compact
graph. Then the map Tgraphp = Cgraphp is convex valued and ls.c. Since
DP(t,z)(1) N (2M + 1)clB is nonempty, it will be also l.s.c. (see Proposition 4
later) and convex valued. So by Michael’s selection theorem (see in [17]) we get
that it has a continuous selection h: graph P — X. Then by definition

F:graph P — K(R x X), F((t,z)):={(1,h(,z))}

from [14] we obtain that there exists an absolutely continuous function y = (7, z) :
[to,1] — graph P such that y'(t) € F(y(t)) and y(to) = (to, zo) for any (to,zo) €
graph P. It yields 7(t) = t, so z'(t) = A(t,z(t)). Furthermore with an obvious
modification in a similar way we get that there exists an absolutely continuous
function z : [0,o] — graph P such that 2/(t) = A(t, 2(t)) and z(to) = zo. Then the
linked function ¢ is absolutely continuous, ¢(to) = zo and ¢'(t) = h(t, (t)). Since
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(¢, ¢(t)) € graph P, the function ¢ is a selection from P. Moreover h is continuous,
thus, ¢’ is continuous. Finally,

lle’ @Il = (1A, o(t)]] < 2M + 1.

Of course, it means that a strongly sleek map is Lipschitz-continuous with the
mentioned constant 2M + 1 as a Lipschitz-constant. In finite dimension the
Lipschitzeanity by itself is enough to follow the strongly sleekness of a sleek map.

Proposition 3. Let X be a finite dimensional Banach space. A sleek map
P :[0,1] — F(X) with a closed graph is strongly sleek if and only if P is Lipschitz-
continuous, i.e. there exists a constant M > 0 such that for every t,,t, € [0, 1]

P(tl) C P(tz) + M. |t2 —t1|-clB

and
P(ty) C P(t1) + M - |ta — 11| - cIB

holds true.

Proof. The necessity we have seen. Take a Lipschitz-continuous sleek map
P, let {h,} be a sequence of numbers converging to 0 from above and let ¢t € [0,1)
be a number such that
t+h,€[0,1] (n€eN).

Let z € P(t) be a given vector. Then there exists a vector y, € P(t + hy) such
that
llyn — 2|l < d(z, P(t+ ha)) < M - b

Yn — T
hn
we get that there exists a subsequence (vnt) C (vn) and a vector v € X such that

vnk — v. Thus ||Jv|| < M. On the other hand,

d v,—P(t-’-h"k)m:B <d v,vnk_z = d(v,vnt) — 0.
hnk hnk

Denote v, := , then ||va]| < M. So by the Bolzano-Weierstrass theorem

Thus, using Proposition 2 in Ch.4. sect.3 in [3], we have
v € DP(t,z)(1).

So
DP(t,z)(1)NM -cIB#0

for every t € [0,1) and z € P(t).
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Proposition 4. Let X be a Banach space and P : [0,1] — F(X) be a strongly
sleek map with a constant M > 0. Then for every constant ¢ > 1 the map

H. : graph P — F(X)
H.(t,z):= DP(t,z)(1)N(2M +¢) - cIB
is l.s.c. Moreover the map DP(-,-)(1) is also Ls.c.

Proof. Consider a couple (¢,z) € graph P. Let G C X be a given open set
such that
H.(t,z)NG # 0.

Then there exists a vector v € H.(t,z) N G and a positive number € such that
v+20(M +¢)e - clB CG.

Since Tgraphp is 1.s.c., there exists a neighbourhood U of (t, z) such that whenever
(7,y) € U there will exist a couple

(r,u) € Tgraphp(7,y) N ((1, v)+e-(-1,1) x B)

(we note that the set (—1,1) x B is the unit ball in R x X considered with the
maximum norm). Thus, |[r — 1| < € and ||u — v|| < €. So |r| < 1+ ¢€ and |Ju|| <

2M + ¢ + € since v € H.(t,z). Obviously we get Ze DP(r,y)(1) and
r

u 1
”E—v" Sllu—vll+‘|——u”<e+‘——1‘-|IUIIS
T r r

r— 1
T

<e+ (2M +c+¢) <2(2M + c+1),

. . 1
provided we suppose that ¢ < l because in that case r > 3 Then HE - v“ <
r
(4M + 2¢ + 2)e so nE" < 2M + ¢+ (4M + 2¢ + 2)e. On the other hand, there
T
exists a vector ug € DP(r,y)(1) such that ||ug|| < M. Then (1,up) and (1, 3:—)

belong to Tgraphp(T,y) = Cgraphp(7,y) since P is sleek. Thus, from convexity of
Cgraphp(T, y) we get

(1, (1- 46)1;' + 45“0) € Cgraphp(T,Y),

so we have

(+) a=(1- 45)% + 4euo € DP(r,y)(1)
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provided £ < % Now,

. u
lall < (1 = 40) | 2] + delluoll <

<(1-4€)(2M + ¢+ (4M + 2c + 2)e) +4eM <
<2M + c+ (4M + 2c + 2)e — 8eM — 4ec — (16 M + 8¢ + 8)e? + 4eM <
<2M +c+2(1 —c)e < 2M +¢,
since ¢ > 1. Thus, ||i|| < 2M + c. Then by (*) we get

4 € H(r,y).

On the other hand,
llv— 1| < "v - _u" + "_u —ﬁ" <
= r r

< (4M + 2c+ 2)e + 4¢ ("g" + Iluoll) <
4(M + c)e +4e(3M + c + 4(M + c)e) < 20(M + c)e,

¢ having been smaller than %

Thus, since v + 20(M + c)eB C G, we get 44 € G, i.e.
(%*) H(r,y)nG #0.

Now we have proven that (xx) holds true for every (r,y) € U. It just means the
lower semicontinuity of H,.

Now examine the map DP(-,-)(1). If G C X is an open subset such that
DP(t,z)(1)NG # 0, then there exists a number ¢ > 1, such that Hc(t,z)NG # 0.
We have seen that H. is l.s.c. So in a neighbourhood of (¢, z) we get H (7, y)NG # 0.
Of course, in this case DP(r,y)(1) NG # 0.

3. The nonconvex case

Consider a reflexive Banach space X and a strongly sleek map P : [0,1] —
F(X) with a boundedly compact graph. Let F : graph P — F(X) be a given map
such that

(a) Fis A x B-measurable;

(B) Fisls.c. on P(t) for a.e. t € [0,1];
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(y) F is integrally bounded, i.e. there exists a function £ € L'[0,1], £ > 0 such
that for a.e. t € [0, 1] and every z € P(t)

F(t,z) C L) - B;

(6) F(t,z) C DP(t,z)(1) for a.e. t € [0,1] and every z € P(t).

Theorem 3. Let us assume that the conditions writlen above are satisfied.
Then for any zo € P(0) there ezists a function z € AC([0,1]; X) such that

z(t) € P(t) forevery t€[0,1];
(3) { z'(t) € F(t,z(t)) fora.e.t,
z(0) = =zo.

Proof. Denote P := graph P C Rx X. We can obviously assume that 1 < £(t)
for a.e. t. Define the map £ :[0,1] x P — F(R x X) by

; — {(I,U)ZUEF(t,z)}, if t=r;
F(t (r,2)) = { {(1,0) : v € Hyay(r,2)}, if t#

where Hy)(7,z) := DP(r,z)(1)N(2M +£(t)) -c1B and M is a constant of strongly
sleekness of P. Then £(t) := 2M + £(t) is an integrable function such that

F(t,(r,z)) C £t)- B

for a.e. t and every (7,z) € P where B is the unit ball of the Banach space R x X
since £(t) > 1. On the other hand, by Proposition 4, we get that the map Hy) is

Ls.c. for a.e. t € [0,1]. Thus, from (§) we have that F(t,(,-)) is L.s.c. for ae. t,
since the set X
{(t.(t,2) :ze PO} C{t) x P
is closed. Furthermore from the inclusion
Hyyy(r,z) C DP(r,z)(1)

and from (8) we get
F(t,(r,z)) C Tp(r,z)

for a.e. t € [0,1] and every (7,z) € P. Now we show that F' is S-measurable where

S means the o-field mentioned in the first paragraph with the metric space P and
the Banach space R x X.
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Denote Q := {(t,(t,z)) : (t,z) € P}. It is a closed set in [0,1] x P. Now take
an open subset G in R x X. Then the set

Z:={(t,z)€ P:(1,F(t,z)) NG # 8}

is obviously A x B(X )-measurable since F' is measurable. So there exists a Borel-set
A C [0,1], A(A) = 0 such that the set Z\(A x X) is Borel-measurable in the space
R x X. Then

{(t,(r,2) €[0,1] x P: F(t,(r,z)) NG # 0} =

= ({(t, (1,2)) : (1, Hyy(7,2)) NG # 0}\0) UL (. 2) : (1, F(t,2)) NG # 0}

This set will be obviously S-measurable if we show that the set
W= {(t,(t,z) : (1, F(t,z)) NG # 8}

is S-measurable. It is carried out in the following way:

{(t,(¢,2)) : (1, F(t,z2)) NG # 0} =
={(t,(t,z):(t,z) e Z} =
={(t,(t,z)) : (t,z) € Z\(Ax X)}UE

where the set E C A x (R x X). Since the function

f:Q—P
(t,(t,z)) = (t,z)

is continuous, the set {(,(t,z)) : (t,z) € Z\(A x X)} is Borel-measurable in
Rx(RxX). Thus, from definition of S we immediately get that W is S-measurable.
So we have shown the S-measurability of the set

{(t,(r,2)) €[0,1] x P: F(t,(r,2)) NG # 0},

which means the S-measurability of F. According to (6), without loss of generality
we can assume that X is separable, because (1, F(t,z)) C cl lin graph P. Then
the space R x X is also separable. Now by Proposition 1 there exists a A x B-
measurable and integrally bounded map F} : [0,1] x P — F(R x X) such that for
a.e. t and every (7,z)

Fi(t,(r,z)) = F(t,(r,2)).
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Now the conditions of Theorem 1 for the map F; with the modifications men-
tioned in the second paragraph are fulfilled. Thus, there exists a function
y € AC([0,1]; R x X) such that

(4)

y(t) € P forevery t€|[0,1];
y(it) € F (t,y(t)v) ae. t€[0,1];
y(0) = (0,20).

Of course, in this case we can write F' instead of Fy. That is, there exists a function
T € AC([0,1]; R) and a function z € AC([0, 1]; X) such that y = (7,z), so

(‘r(t), z(t)) € graph P;
(5) (r@) =) € F (¢, (r(),2());
7(0) =0, z(0) = zo.

Then from definition ' we get that 7/(t) = 1 for a.e. t € [0,1] and 7(0) = 0. It
follows that 7(t) =t for every t € [0, 1] since 7 is absolutely continuous. Then from
(5) we have that

(t,z(t)) € graph P for every t € [0,1]

and
(1,2(t) € F(t, (t,2(1)) for ae. t €[0,1),

which just means that z is a solution to (3).
By Proposition 3 we immediately get the next theorem from the previous one:

Theorem 4. Let X be a finite dimensional Banach space and P
[0,1] — F(X) be a sleek and Lipschitz-continuous map with a closed graph. Let
F . graph P — F(X) be a set-valued map satisfying (a) - (8). Then there exists
a solution z € AC([0,1]; X) to (3).

4. The convex case

In this section we give a viability theorem with a weaker tangential condition
than in the previous one, however we have to suppose, as usual, that the values of
F are convex. Unfortunately, we must assume that F(t,-) is Hausdorff-continuous
for a.e. t instead of the usual upper semicontinuity because of the method of
our proof. Let us assume that X is a finite dimensional Euclidean space and
P :[0,1] = Feonv(X) is a strongly sleek map with a closed graph.

Moreover suppose that F : graph P — F,ony(X) is a given map such that
(a’) Fis A x B-measurable on graph P;
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(B') F(t,-) is continuous on P(t) for a.e. t € [0,1];
(¥') F is integrally bounded;
(6') F(t,z)Nn DP(t,z)(1) # 0 for a.e. t € [0,1] and every z € P(t).

Theorem 5. Let us assume that the conditions (a') - (8') are satisfied. Then
for every zo € P(0) there ezists a solution z € AC([0,1]; X) to (3).

Proof. We use the notations of Theorem 3. Since P(t) is convex, for any
z € X there exists one and only one point zo € P(t) such that ||z — z¢|| is minimal.
Denote this zo by Ilp;)(z). Then Mpy) : X — P(t) is a continuous function.
Define

I(t,z) := F(t,Mpu(z)) (t€[0,1], z € X).
Then T is measurable in ¢ and continuous in z.
Define for t € [0,1] and (r,z) € P

e(t,(r,z)) :=inf{d(v,[(t,z)) : v € DP(r,z)(1)}.

Since DP(-,-)(1) is ls.c., we have (t,(r,z)) = inf{d(f(r,z),['(t,z)) : f is a
continuous selection from DP(-,-)(1)} by Michael’s selection theorem (see in [17]).
Obviously for each f the function (7,z) — d(f(-r, z),I(t,z)) is continuous. Thus,
the infimum, i.e. s(t, (- )), is upper semicontinuous. It can be easily seen that ¢ is
measurable in ¢ (see Lemma I11.39 in [6]). On the other hand, in case t = 7 we have
e(t,t,z) = 0 because of (§'). Since ||F(t,z)|| < €(t) and DP(7,z)(1)NM -clB # 0,
we get
e(t, (v, z)) <Lt)+ M.

Define for t € [0,1] and (7,z) € P
F.(t,(r,z)) :==T(t,z) +&(t,7,z) - clB.

Then F, has convex closed values and it is u.s.c. in (7,z) and measurable in ¢. F,
is obviously integrally bounded with the function 2£(t) + M. Due to the definition
we get
(6) F.(t,(r,z)) N DP(r,z)(1) # 0.
If t = 7, then z € P(t). So by definition I and € we have

F.(t,(t,z)) =I(t,z) = F(t,z).

Denote

F(t,(r,z)) := {(1,v) : v € F.(t,(r,2))}.
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Then the map F : [0,1] x P — F.ony(R x X) is measurable in ¢ and u.s.c. in (7, z)
and integrally bounded. By (6) we get

F’(t, (r,2)) NTp(r,z) £ 0,
on the other hand, because of the sleekness of P we obtain
F(t,(r,2)) NCp(r,2) £ 0.

Thus, F' satisfies all the conditions of Theorem 2. Consequently, there exists a
function y = (r,z) € AC([0,1]; R x X) which is a solution to (5). Now the rest of
the proof is carried out in the same way as in Theorem 3.

Similarly to Theorem 4, we obtain the following theorem.

Theorem 6. Let X be a finite dimensional Banach space and P : [0,1] —
Feonv(X) be a Lipschitz-continuous sleek map with a closed graph. Let us assume
that F : graph P — Feony(X) is a set-valued map satisfying (a') - (8’). Then for
each zo € P(0) there erists a viable solution to (3).
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