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SOME NOTES ON MULTISTEP ITERATION
METHODS

F.Szidarovszky (Budapest. Hungary)
K.Okuguchi (Tokyo, Japan)

Abstract. This paper generalizes well-known results given previously for
single-step iterations. Three types of convergence conditions are presented.
Contraction-type results are first given for multistep iterations, for both cases
of explicit and implicit processes. Then, conditions for the monotone conver-
gence of the explicit method are introduced, and in the third part of the paper
generalized Newton-type methods are analysed.

1. Introduction

During the last years an increasing attention has been given to the convergence
analysis of iteration procedures for solving nonlinear equations (see for example
Schmidt [4], Potra and Ptak [2], Potra and Rheinboldt [3]). Most of the works
are concerned with single-step methods, but multistep iteration processes are very
important not only

for computing solutions of nonlinear equations, but also in investigaling sta-

bility of equilibria in dynamic games. An applicalion of mullistep ilerations in

such problems is presented by Szidarovszky and Okuguchi (1987).

In this paper the well-known convergence and monotone convergence criteria
(Ortega and Rheinboldt [1]) will be generalized for multistep processes. The de-
velopment of this paper is as follows. In Section 2 the convergence of explicit and
implicit multistep processes is investigated. In Section 3 conditions for the mono-
tone convergence of the same processes are discussed, and in Section 4 generalized
monotone Newton-type iterarions are analysed.

2. Convergence criteria

In this section the convergence of the iteration process
(2.1) Tet1 = Grg1(Thy -+ -, Thp1-1)

will be analysed, where zg, z;,...,z,-; are the initial approximations.
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Let D C R*,Gy4, : D' - R",G : D* — R (where D*=Dx D x ...x D).
Assume that there exists a set Dy such that Dy C D, furthermore

(a) zx € Dy for all k > 0;

(b) for all s1,52,...,5¢41 € Do, and k > 0,

I4
(2.2) || Gegi(s1,52, -, 50) = Gi(52, -, 50, 5041) IS ) i || 5 — sigr I,

i=1

n
(¢) Yai<!l, a; >0 (i=1,2,...,4);
i=1

(d) for all z € D, Gi(z,...,z) = G(z,...,z) (k— o0).

The main convergence result can be given as

Theorem 1. Under conditions (a)-(d) the iteration process (2.1) converges
to the unique solution of equation z=G(x,...,z) in Dy.

Since the proof of this theorem is a simple extension of the proof of Weinitschke
(6], the details are omitted.

Remark. The stationary version of the theorem has been proven by Weinit-
schke [6]. The single step version of this theorem is given in Ortega and Rheinboldt
([1] p- 389).

In many applications the new iterate z4+; cannot be expressed as an explicit
function of the previous iterates i, ..., x4+1—¢. In such cases a generalized version
of the iteration scheme (2.1) is applied. This generalized implicit iteration is as
follows:

(2.3) i1 = Grpr(Th41, Zky - - Thp1-2),

where G4 : D*t! — R™. Assume that there exists a subset D, C D such that
(1) For arbitrary sy,...,s¢41,21, ..., te41 € Do,

41
| Ge(set1,.--,81) = Geteyr, -, 1) |< ZP:' | si =t |,

i=1

where for any vector u = (u;),| u |= (] u; |), and the matrices P; are nonnegative;
Qe Qe Q: O
.. t+1 I
(i1) Le¢ T= 3> P, and P= 1
i=1
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with Q; = (I — Pr41)7 ! P;, then p(T) and p(P) are less than unity. Here p(-)
denotes the spectral radius of real matrices;

(iii) Define Hy : D — R", Hx(z) =| Gi(z,...,z) — G(z) |, where G(z) =
G(z,...,z) and assume that for all z € Dy and k — oo, Hg(z) — 0. (Here G :
D' — R™);

(iv) Assume that initial approximations zg, ..., z¢~1 € Dy are selected so that
equation z = Gy(z, ¢, ..., Zo) has a unique solution z; in Dy, furthermore

S={z€ R ||z -2 |<¢€} C Do,

where ¢ is selected so that
¢
(2.4) T€+2U+ZP,‘|I¢—Z.‘_1 [<e
i=1
with v > Hi(zy), k > €.
The convergence of the implicit scheme (2.3) is guaranteed by

Theorem 2. If assumptions (1), (i1), (iii) and (iv) hold, then for all k > ¢
implicil iteration ¢ = Gx(z,Tk—1,...,ZTk—¢) has a unique solution zx € S,limz; =
z*, where z* € S is the unique fized point of G in Dy, that isz* = G(z*,z*,...,z*).

Proof. We shall proceed in several stages.
(a) Let z,y € Dy arbitrary, then for all £ > 1,

| G(z) - G(y) IS| G(z) = Ge(z, -, 2) | + | Gel(z, -, 2) = Ga(y, -, 9) | +

41
+|Gi(y,-,y) - G(y) I< Hi(2) + Hi(y) + Y P |z —y].

i=1

41
For k — oo the first two terms tend to zero, and therefore p( 3 P,') < 1 implies

i=1
that G(-) is a P-contraction on Dy (see Ortega and Rheinboldt [1]).
(b) We shall now show that G(:) maps S into itself. Let z € S, then

| G(z) — z¢ S| G(z) — G(ze) | + | G(ze) — Gel=e, -, 2e) | +
+ l Gt(l’[,...,l‘[) - Gt(:rg,zt_l,...,zo) |$ T. [ T—xz l +H¢(1‘1)+
L I
+ZP,' | z¢—zi1 |ST-6+v+EP-‘ |z¢—zio1 [<e.

i=1 i=1
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Hence z = G(z) has a unique fixed point z*(€ S) on Dy.

(c) Next we verify that for z,y1,..., % € S, Gk(z,ye,...,y1) €S (k > £). For
this purpose consider the following inequality:

| Ge(z,ye, - 1) — 2 |<
SI Gk(z)yly "')yl) - Gk(zl! . "azl) I + I Gk(zly' . ')Il) - G(I[) I +
+ | G(ze) = Ge(zt, - - - z) | + | Ge(zey - - -y 2) — Ge(ze, Te-1, - - -, T0) |<

L L
< 21 Pilyi—ze | +Peyr |z — 2o | +Hi(ze) + He(ze) + 3 Pi | ze — zi1 |<
1= i=1

)
5T€+2v+EP,~]:c¢—z,-_1 I<e.
i=1

Hence equation z = Gi(z,yt,...,¥1) is a P-contraction on S for any fixed
Ye,..., Y1 € S, therefore it has a unique solution in S, which is the unique so-
lution in Dy.

(d) Finally, consider

|z — 2" |<| Ge(zk, Tk-1, .- -, Th-t) — Gr(z*, ..., 2") | +

+1
+ | Gk(:z:', .. .,1:‘) - G(.’l:‘) |S EP,‘ | Th—t+i—1— z* | +Hk(:c").

i=1

Denote up =| z — z* |, then we have

-1
up <Y Pitk_rqict + vk,

i=1

where vp = Hi(z*). Since Pry1 < T, p(Pey1) < 1 and (I — Py41)~?! is nonnegative.

Hence
¢

up < (I = Ppyq)~! Z Piug_g4i-1+ wi

i=1

with wg = (I — Py41) " 'vi. Define z,(cl_)l = ug_1,. ..,z,(:_)l = Up_yg,
(1) wk
zk—l 0
Zp~-1 = , S =

Zl(c_)l 0
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Then
2k < Pzp_1 + s¢.

Since p(P) < 1, there exists a norm such that || P ||< 1. Let ¢ > 0 arbitrary, and
assume that || s¢ ||< € for k > K, and define kg = max{K,£}. Then

2 <Pz_i+sk+Psio1+...+ P lsi o (i>1).
If one selects kg = k + 1 — ¢, that is, i = k + 1 — ko, then we have
7 < P""’l‘k"zku_l + sk +Psg1+...+ P"""°sk°.
Hence

I ze ISP AFHF 5l ziga T+ TN+ NP I+ 4+ N PF50) e <

1

—_— .6,
1= P

I P YFF R 2 ] +

which shows that || z; ||~ 0, so zx — 0 and therefore uy — 0, that is z; — z*.
Thus, the proof is completed.
Remarks.

1. Condition (iii) implies that sequence {Hy(z)} is bounded, therefore there
exists a vector v which satisfies (iv). Inequality (2.4) is equivalent to

4
(I-T)e>2v+ ) Pilze—zia|.

i=1

We can easily show that (2.4) is satisfied by selecting
¢

(25) €0=(I—T)—1 [2U+EP,'I:B[—I,'_1 | .
i=1

Since p(T) < 1 and T > 0, matrix (I — T)~! is nonnegative. Consequently
€0 > 0. Furthermore premultiplying (2.5) by (I — T'), we conclude that (2.4) is
satisfied with equality.

2. Consider now the special case of £ = 1, which corresponds to one-step
iterations. Condition (ii) now means that

p(P2)<l) p(P2+P1)<11 and p(P)<1)
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where P = Q, = (I — P;)"!P;. We can easily show that p(P) < 1 and p(P2) <
1 = p(P2 + P1) < 1. For, observe that P, + Py > 0, furthermore

I=P—P=(I~=P)I~(I-P) 'P)=(1-P)(I-P).

This implies
(I-P=P)'=(I-P)'I-P) ' >0,

and therefore p(P; + P;) < 1.

This case of £ = 1 corresponds to the single-step iteration process, which was
analysed in Ortega and Rheinboldt [1]. Our theorem for the multistep process is a
straightforward generalization of that classical result.

3. If G¢4+1 and G do not depend on their first argument, then theorem gives
conditions for the convergence for explicit iterations.

3. Monotone convergence of multistep iterations

In this section sufficient conditions will be given for the monotone convergence
of the iteration scheme (2.1). In R™ we say that ¢ < y if and only if z; < y;, where
z; and y; are the components of z and y, respectively.

Definition 1. Mapping G : D! — R" is called increasingly isotone on D, if
for arbitrary s; € D (i =1,2,...,£+ 1) such that sg41 > 50> ... > 52 > sy,

(31) G(St.H,St,...,Sg)zC;(S[,Sl_l,...,sl).

In the literature we say that mapping G is isolone, if z;,z; € D,z; < z; (i=
1,2,...,¢) imply G(z¢,...,z1) < G(z},...,z}). In analysing monotone conver-
gence of iteration processes it is usually assumed that mapping G is isotone. We
can however easily show that if G is isotone, then it is also increasingly isotone, but
if G is increasingly isotone, then it is not necessarily isotone. The first statement
is obvious, and the second statement is verified by the following example.

Example 1. Define

D =[0,1]C R!,

and let

| =, if y>2z-1,
G(z’y)_{y—x+l, if y<2z-1.

Note that the function is continuous on D?.

First we show that G is increasingly isotone. Select £ > y > z, then we have to
prove that G(z,y) > G(y, z). First observe that G(y, z) < y. For, if z > 2y—1, then
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G(y,z) =y,and if z < 2y—1, then G(y,z) = z—y+1 < 2y—1—-y+1 =y. On the
other hand, we can prove that G(z,y) > y. For ify > 2z —1, then G(z,y) = z > y,
and if y < 2z — 1, then G(z,y) =y—z+ 1> y, since z < 1.

But G is not isotone. Take points (1,y) and (1—¢,y) where 0 < y < 1-2¢ < 1.
Then G(1,y) =y, and G(1 —¢,y) =y— 1+ e+ 1 = y+e¢. That is, by decreasing
the first variable the functional value increases.

This example shows that the property ”increasingly isotone” is more general
than the property ”isotone” of functions.

(A) Assume that mapping G is increasingly isotone on D.
Consider the iteration scheme

(32) Te41 = G(:ck,...,xk+1..¢)
starting from initial approximations z; € D(0 < ¢ < £ — 1), such that o < z; <
... < z4. Assume that zx € D (k > ¢).

Theorem 3. In the case of the iteration (3.2), x4y > zi for allk > 0.

Proof. By induction, assume that for 7 (i < k), z;4+1 > z;. Then (3.1) implies
that
Trp1 = G(Zky .y Thp1-2) 2> G(ZTk—1, ..., Th—t) = Tk

Since the assertion is true for ¥ < £+ 1, the theorem is proven.
Consider next the iteration scheme

(3.3) Ye+1 = G(Yk+1-4,- - -, Yk)
starting from initial approximations y; € D (0 < i < £— 1), such that yo > y; >
... > ye. Assume that yx € D (k > £).
Theorem 4. In the case of the ileration (3.3), yr4+1 < yx for all k > 0.
Proof. Assume again that for i (i < k), yi4+1 < y. Then, from (3.1) we may

conclude that

Y41 = G(Yk41-0,- - k) S G(Yk=ty -, Yk—1) = Y.

Since the assertion holds for k£ < ¢ + 1, the theorem is proven.

Before presenting further conditions for the monotonicity of iteration sequences
a lemma is presented, it can be proven by the repeated application of (3.1).

Lemma 1.Assume that G is increasingly isotone on D, then for arbitrary
$g28-12...2851 2> >.. 2 (ti€D, s;€D, i= 1,...,9),

G(se,s0-1,---,81) 2 G(te, te—r, .- - 11).
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(B) Assume now that mappings K : D* — R" and H : D* — R™ are increas-
ingly isotone on D. Starting from initial approximations

o<t <. <z SY1 <. Snsy

(zo € D, yo € D) consider the iteration sequences

Trp1 = K(ze, 2i—1, .., Tet1-0) — H(Yr41-6, - -+, Yk=1, Uk)

(3.4)
Y41 = K(Yk41-0, - Yk=1,¥) — H(Zk, Tho1, - .., Thp1-2)-

Assume that z,_; < zy <y, < yr—1 and
<zo,yo>={z|z€R", zo<z<y}CD.

Theorem 5. Under the above assumplions

a) 2 < Tep1 <Y1 <y (E2>0);

b) if z is a fired point of G = K — H in < z4,y; >, then for allk, z; < z < yi.

Proof. By induction, assume that z;4; > z; and y;4+1 < ¥ (¢ < k). Then
obviously

K(zp,Ze—1, ... Thg1-0) 2 K(Th-1, k-2, .., Tk—1)

and
H(Yes1-t,Yk+2-6, -, 0) < H(Yk—t, Yb—t—1, - -+, Ye-1)-

By subtracting these inequalities, we obtain that x4, > . Similarly by subtract-
ing the first equation from the second one after exchanging functions K and H we
conclude that yr4+1 < yk.

Next we shall prove that for all k, z; < y. Assume now using finite induction
again, that z; < y; (¢ < k). Then

Tipr = K(ze, Te—1, ., Teg1-0) — H(Yk+1-0, Ye42-0- -, Yk) <

S K(Yk+1-6,Ykg2—, -, Yk) — H(Zk, Tem1, -, Thg1-0) = Yk41,
which proves the assertion for k£ + 1.
Assume now that z is a fixed point of G in < z,,y, >, then by induction we
can verify that for all k > £, =} < 2z < y;. For, assume that z €< z;,y; > (i < k),
then
Tit1 = K(zk, k=1, -+, Teg1-0) — H(Yk41-0, Yet2-0, -, k) <

< K(z,2,...,2)— H(z,2,...,2) = G(z,2,...,2)

IN
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< K(Yet1-0, Yet2—-t, - Yk) — H(Zk, Te—1, .. ., Thp1-2) = Yk+1,

which completes the proof of the theorem.

Corollary (Generalized Kantorovich Lemma). Assume that G is in-
creasingly isotone on D, and the initial approzimalions satisfy zg < z; < ... <
2y <y <...<y < yl, and assume that zo,y0 € D, < zo,y0 >C D. Then
for (3.2) and (3.3), zr 1 z* and yi | y* for some z*,y* € D,z* < y*. Moreover,
if G is continuous (as an f-variable function) on < zg,yo > X...X < Zo,Yo >
(=< zo,y0 DY), then z* and y* are fized points of G and any fized point z €<
z¢,yr > salisfies z €< z*,y" >.

Proof. Selecting K = G and H = 0 Theorem 5 implies that for all k¥ >
1,z; < yo and yr > zo. Then sequences {zi} and {yr} are convergent, =} 1 z*
and yi | y*. Since for all k, z; < yi, we have that z* < y*. For continuous G the
iterations

Trp1 = G(Tk. Th—1, ..., Th41-1)

Ye+1 = G(Uk41-0, Yet2-t, -, k)

imply that z* and y* are fixed points. Statement b) of Theorem 5 implies that for
all k,
rr <z < Yk,

where z €< x4, y; > is any fixed point of G. Thus

zt <z

N\

<y,

which completes the proof.

Remark. The above theorems remain valid in more general function spaces
and partial orders.

4. Monotone Newton-type iterations

In this section monotone Newton-type iterarions will be investigated.

(A) Consider equation F(y,...,y) = 0, where F : D* — R". Assume that
there exists a mapping A : D* — R" such that

(4.1) F(s¢=1,...,80) — F(s¢y...,51) < A(se=1,---,50)(5¢e=1 — 5¢)

foralls; € D, s; <s;-1 <...<8; < sp.
Consider now the iteration scheme

(4.2) Yk+1 =Yk — Pk, Ykt1-0) F ¥k, - - Yet1-2)
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where Pi(-) is a nonnegative right subinverse of A(-). Assume that the initial ap-
proximations from D are selected so that y,—; < y—2 < ... < y1 < Yo and
F(ye=1,...,90) > 0. Then we are able to verify

Theorem 6. If y. € D for allk > 0, then
a) ye < yk-1 for allk, F(ye,...,Ye41-¢) >0 forallk > £~ 1.

b) If sequence {yi} is bounded below, that is y > = for some x € R", then
there ezxits an y* such that yr | y*.
c) If in addition, there ezists a nonsingular P € L(R"™) such that

Pe(yk,-- - Yk41-¢) 2 P >0, (Vk > ko)

and F is continuous at (y*,...,y*), then F(y*,...,y*) =0.
Proof. (a) First we shall prove by induction that a) holds. The statement

holds for k¥ < £ — 1. Assume that it is valid for a given k. Then (4.2) implies that
Ye+1 < Yk, furthermore
F(Yes1, s Ykt2-2) 2
2 F(ye, - yks1-0) + A(Ye, - Ykt1-0)(Yk+1 — k) =
= —-A(yk, - Uk4+1-0)Pe(We, - vk 1-0)] F(Uk, - - - Yk41-2) > 0.

Thus the induction completed.

(b) If sequence {yi} is bounded from below, then the monotonicity of the
sequence implies the convergence.

(c) Iteration (4.2) implies that for k > ko,

Ye — Y1 = Pe(Ue, - Yk41-0) F (Uk, - Yk41-0) 2 P F(yk, - - Yr41-2) 2 0.
Since yx — yk+1 — 0 for k — oo, and P is invertable, F(yk,...,yk+1-¢) — 0. The
continuity of F' at (y*,...,y") implies that F(yk, ..., ye+1-2) — F(y*,...,y*) = 0.

(B) A monotonically increasing sequence will be now constructed. Assume
that there exists a mapping B : D' — R" such that
(4.3) F(s¢-1,...,50) — F(s¢,...,81) < B(s¢=1,---,50)(s0 — 51)

for all s; € D, sy < s4-1 <...< 5, < sp.
Consider now the iteration scheme

(4.9) Tet1 = Tk — Qr(Tk41-4,- -, Tk) F (Tht1-2, - - -, Tk),
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where Qx(-) is a nonnegative right subinverse of B(-). Assume that the initial
approximations from D are selected so that z4—1 > z4—2 > ... > z; > z¢ and
F(zg,...,z¢-1) < 0. Then we can prove the following

Theorem 7. If 2z, € D for all k > 0, then

(a) zx > zk—1 for allk, F(zeq1-¢,...,2k) <0 (for k> £—1);

(b) If sequence {zi} is bounded from above, that is, zx < y for some y € R"
then there erists an z* such that z 1 z*;

(¢) If in additon, there exists a nonsigular Q € L(R™) such that

Qk(zk+l—l,--~1xk) EQZO (VkaO)

and F is continuous at (z*,...,z%), then F(z*,...,2*) = 0.

Proof. Assertion (a) can be again proven by induction. If £ = £ — 1, then
the assertion is true. Assume now that it holds for a k. Then (4.4) implies that
Tg41 > zg. Furthermore from (4.3) we have that

F(zk42-ty- - Tk41) < F(zrg1-¢,. -, Zk)+ B(zrt1-0, Thg2—-t, - -, k) - (Thp1 — Tk)

= - B(zk41-2, - -, Zk)Q(ze41-2, - - ., k) F(Th41-2, ..., 2£) <0,

thus the induction is completed.
(b) If {zx} is bounded from above, then z; T z* for some z*.
(c) Since for k > ko,

Tiyr — Tk = Qr(Tet1-0, -, Te) (= F(Tkg1-2, ..., Tk)) >
> _QF(IIC+1—[: ...,Ik) > 0)
and 41—z — 0 for k — oo, we may conclude that for k — 0o F(zr41-¢,.-.,%k)

— F(z*,...,z*)=0.
Remark. If z* = y*, then Theorems 6 and 7 imply that for all £ > 0, z; <
z* < y;. Consequently,

max{| zx —z" |, |ye — =" |} <l v — 2¢ |,

which gives a practically applicable error estimate for the iteration error of zx and
Yk -
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