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TRIADDITIVE FUNCTIONS

T. Szabé (Debrecen, Hungary)

1. Introduction

Let A be the set of the strictly decreasing sequences A = (\,;) of positive real
numbers for which L()A) := § An < +00. A sequence (A,) € A is called interval
filling if for any z € [0, L(z\)]n?}iere exists a sequence (4, ) such that é, € {0, 1} for
alne€ Nandz = f: 8, . This concept was introduced and discussed in [1]. It is
known from [1] tha,’;;zz\1 = (An) € A is interval filling if and only if A, < Ly41(A) for
all n € N where L, (A) = i Ai,m € N. The set of the interval filling sequences

I=m
will be denoted by IF.
An algorithm (with respect to A = (A,) € IF) is defined as a sequence of
functions ay : [0, L(A)] — {0,1} (n € N) for which

T = Z an(z)Mn

n=1

for all z € [0, L(A)]. We denote the set of algorithms (with respect to A = (A,) €
IF) by A()A). Obviously, A(A) # 0 for all A € IF. Namely, it was proved in [1], [2]
and [3] that if A = (A,) € IF and

n-1
0 if z< ) e(x)hi+An
(1.1) en(z) = it
1 if 2> 3 ei(z)hi+A, neN, z€[0,L(})]

i=1

or

n-—1

0 if 2< Y (@) + A

(1.2) en(z) = =1

1 of 2> Y el(z)\i+A, n€N, ze€]0,L(N)]
=1
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or

|
—

0 if z2< 3 (@) + Lopi(A)
(13) e(z) =

3 -
[l
——

1 if 2> ) €(z)Ai+Lay1(A), n€EN, z€[0,L(N)]
i=1

then € = (en),€* = (€,),€° = (€5) € A(A). €,€* and €° are called the regular,
quasiregular and antiregular algorithm, respectively.

If (a,) is a sequence in R such that § | an |< 400, A= (As) € IF, Ag C
n=1
A(A), Ao #0, F:[0,L(A)] - R and

F(GB) = E an(z)an, zTE [0) L(’\)]
n=1

for all (an) € Ao then F will be called an Ag-additive function (with respect to
A). It is known that the ,A())-additive functions are linear [4] and an {¢}-additive
function is continuous if and only if it is {¢,e*}-additive (is called biadditive)[2].
But there is such a biadditive function which is nowhere differentiable in [0, L())]
(see in [5]). In [6], in case of smooth interval filling sequences, Z. Dar6czy and I.
Katai proved that if the biadditive function is positive for positive values of the
variable, or differentiable on a set of positive measure, then it is linear.

In this paper we will prove, for special interval filling sequences, that if the bi-
additive function is {€° }-additive then it is linear. The {¢, €*, £°}-additive function
is called triadditive.

2. Triadditive functions

Theorem. Let A = (\,) € IF such that
(2.1) An 2 Ant1 + Ango

holds for every n € N. Moreover let F : [0,L()\)] — R be a triadditive function
with respect to this A, then F is linear.

Proof. For every z € [0, L())] let

F(L(A)

F*(z) := F(z) — 76
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Then F* is also a triadditive function with respect to A, and using the notions
a, := F*(A;) (n € N)

F*(0) = F*(L(\)) = ) _an =0.

n=1

We will prove that F* = 0. Suppose that the function F* # 0 and let
Py:={n€N | an >0}, P-:={meN | a, <0},

then Py U P_ # 0, and thus, by F*(L())) = 0 the P4, P_ are not empty sets.
Moreover these are infinite sets. For example if P} is a finite set then let n :=

maxP,. Now
20

D

i=n+l
whence by the triadditivity of F* we have

oo

an= Y € (Mn)ai <0,

t=m+1

and this contradicts the inequality a, > 0. That is, P; is an infinite set. The
infinite property of P_ could be proved in similar.

For our proof we shall need the following two lemmas:

Lemma 1. Ifn € Py and A\, # L4y then there exists ny > n, ny € Py such
that

(22) an S il: ai.

i=n+1

Proof of the Lemma 1. Let n € Py such that

n+4s(n)

An = 2 A,

i=n+l

where, by (2.1) s(n) € N, s(n) > 2. In this case, by (1.2) the quasiregular expansion
of A, is
nts(n)-1 00
/\n = Z Ai + E 5: (/\n+s(n))/\i-

i=n+1 i=n+s(n)+1
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Thus using twice the biadditive property of F* we have

n+s(n)-1 00 n+s(n) n,
= Y at+ Y Enpm)u= Y, @< Y a,
i=n+1 i=n+,(n)+1 i=n+1 i=n+1

where, by a, > 0 there exists n; ;= max{l e N |n+1< I <n+s(n), | € Py}.
That is (2.2) holds.

After this let n € P, be such that the quasiregular expansion of A, is

n+4s(n)-1 00
(2.3) P D 'S D D P S bV
i=n+1 i=n4s(n)+1

00
where s(n) > 3 and 0 < Y €i(An)Ai < Angs(n)- By the continuity of F*
i=n+s(n)+1
there exists a number £, 4,(n) such that

max  F*(z) =: F*(nts(n)),
0™ ) (z) (€n+s(n))

and F*(€n4s(n)) > 0 because of the infinite property of P,. Moreover by (2.1)
(2.4) An 2 Loy

holds for every n € N, therefore, by s(n) > 3

(2.5) 0 <énts(n) < Lnts(n) £ Ants(n)-1 + Angs(n) < Angs(n)-2 < Ant1.

Two cases are now possible:

(o)

(2.6) I Z 5:(An)/\i + {n-}-s(n) < Ln+a(n)v
i=n+s(n)+1
)
(2.7) I1. > &)+ Ents(n) > Lutsn)-
i=n+s(n)+1

In the first case let
T:= A, +En+:(n)-
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Then, by (2.3) and (2.6) £ < L,4+1 < An—1 and on the other hand, by s(n) > 3

n+s(n)—1 nts(n)-2
> Z /\i Z E /\i + Ln+s(n)+l'
i=n41 i=n42

Thus, by (1.2), (1.3) and (2.5) the quasiregular expansion of z is

z=A + Z F(@)Ai= A+ Z En+a(n))’\h

i=n+41 i=n+42

and the antiregular expansion of z is

n+4s(n)-2
= Z Ai + 7’\n+s(n) 1+ Z E?(I)/\,‘,
i=n+1 i=n+s(n)

where v € {0,1}. Therefore, by the triadditivity of F* we have

nts(n)-2 oo
a, + F—(£n+:(n)) = Z a; + Yan4s(n)-1 + F‘( E 5?(3)/\1)

i=n+1 i=n+s(n)
Then, by the definition of £, 44(n)
n+4s(n)-2 t
a, < E a; + Ylnts(n)-1 = Z ai,
i=n41 i=n+1

where t = n+s(n) —2if y = 0 and t = n+ s(n) — 1 if y = 1, that is, by
s(n) > 3,t > n. So, by a, > 0 there exists n; € N such that t > ny > n,n, € P4
and (2.2) holds.

In the second case let

(28) Kn+s(n) = Ln+s(n) - Z E; (’\")’\'
i=n4s(n)+1

Then, by (23) Lﬂ+,(n)+1 < I{n-f-.v(n) < Ln+s(n)- Let

max F*(z)=:F"* s(n)-
€10 K ap (o] (z) (77n+( ))
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Thus 0 < F*(Nn4s(n)) < F*(énts(n)) and 0 < Nnys(n) < Knys(n) < Ans1. Let
Y=+ Mn+s(n):

Then A, < y < An_1, so the quasiregular expansion of y is

00
(2:9) Y=Ant Y € (Tnpsm)N
t=n+2

If

(210) /\n+a(n)—1 + E 5;(/\71)/\1' + Mn+s(n) > Ln+a(n)
i=n+s(n)+1
then, by (2.3)
n+s(n)-1 00 n+s(n)-2
y= Z Ai + Z €5 (An)Ai + NMngs(n) > Z Ai + Lnts(n)-
i=n+1 i=n+s(n)+1 i=n+1

That is, by y < Ln41 the antiregular expansion of y is

n+4s(n)-1 00
(2.11) = D XN+Bnpmt Y, )N,
i=n41 i=n+s(n)+1

where 3 € {0, 1}. Therefore, by (2.9), (2.11) and the triadditivity of F* we have

n4s(n)—1 00
an + F*(nﬂ-t-s(n)) = z a; + .Ban+s(n) + F* ( Z 5?(3’)’\1) .
i=n+1l i=n+s(n)+1

Thus, by the definition of 7, 4,(n)

n+s(n)—1 1
an S Y Git+Banpm = Y @
i=n+1 i=n+1

where [=n+s(n)—1if f=0and ! =n+ s(n)if 8 =1. So, by a, > 0 there
exists ny € N such that [ > n; > n,n; € P4 and (2.2) holds.
If
(212) An+s(n)—l + Z 5;(/\11)’\1' + Mn4s(n) < Ln-{-:(n)y
i=n+s(n)+1
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then, by (2.4) the antiregular expansion of y is

n+4s(n)-2 00
y= > Nitdhpmt D &)k
i=n+l i=n+s(n)+1
Thus we have
n+ts(n)-2
(2.13) a, < Z a; + anys(n)-
i=n+1

Now we prove that a,4,n)-1 > 0. By (2.5), (2.7), (2.12) we have

/\n+a(n)—l + /\n+s(n) 2 En+:(n) >

[o.°]

> Ln+s(n) - 2 €I(An)Ai 2> ’\n+:(n)—l + n+s(n)-
i=n+s(n)+1

Therefore, by 7),45(n) > 0 the quasiregular expansion of {,44(n) is the following:

En+s(n) = ’\n+a(n)—l + Z 5:(En+a(n))/\i-
i=n+s(n)+1
Thus, by the triaddivity of F*
F‘(nn+:(n)) < F'(£n+:(n)) = Gn4s(n)-1 1 F‘( Z 6:(6n+3(n))ai) <
i=n+s(n)+1

< @pysn)-1+ F‘(Tln+s(n));

that is, ap4s(n)-1 > 0. By these and by (2.13) and a, > 0 we have that there
exists n; € N such that n + s(n) > n; > n, n; € P4 and (2.2) holds. Thus the
proof of the Lemma 1 is complete.

Lemma 2. For anyn € Py
(2.19) e Y a

Proof of the Lemma 2. Let n € Py arbitrary. If A, = L4+, then by the
triaddivity of F*
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that is (2.14) holds. In the other case, if A, # Lp41, by the Lemma 1 there exists
ny; > n such that n; € Py and (2.2) holds. If A,, # Ln,+1 then by the Lemma
1 there exists ny > ny such that ny € Py and for n = n; (2.2) holds with the
choice n; = ny. Continuing this procedure, let us suppose that n,n,,n,,...,ny_
are already defined (n < n; < ny < ...<n, {n,n;,nz ..., nt} C Py) and A, =
L,,+1. Then, by the triadditivity of F'* the inequalities (2.2) imply

a, <@y +ap, +an,+...+a,, <

n; nja ny 00 o0
(2.15) < E a; + E a+...+ Z a; + Z a; = E a;.
i=n+1 i=n;+1 t=ng_1 41 t=n;41 i=n+1

Otherwise n < ny < nz < ... (n,ng € Py;k = 1,2,...) are always defined,
hence the inequalities (2.2) yield

ap < 8p +ap, +ap, +...<

(2.16)
na n2 n3 (o]
< Zai+ Z a; + Z a;+...= Zai~
i=n+l t=n;+1 t=n,+1 t=n+l1
By the inequalities (2.15) and (2.16), for any n € P, we have

oo
a, < Z a;.

i=n+41

Thus we have proved the Lemma 2.

Using the lemmas we can prove the theorem. Let us now consider the function
—F*, also triadditive with respect to A. Now

Poi={n€N | an <0} ={n | —a, >0},

hence by the lemmas, for any n € P_ we have

(2.17) —an < Y (-a).

i=n+4l
Now by the infinite property of P, and of P_ there exist n € P, and k > 0 such
that n+k+ 1€ P- andif k> 1 then {n+1,n+2,...,n4+k} C P,. Hence by
(2.14) and (2.17) we obtain
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and
o

~ntkt+1 < Z (—ai).

i=n+4k+2

Adding the two previous inequalities we have
an < 2an4k41 <0,

and this contradicts the inequality a, > 0 (n € P;). Thus we have proved that
F* =0, that is

_ F(L()
F(z) = L0V T
for every z € [0, L())].
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