Annales Univ. Sci. Budapest., Sect. Comp. 13 (1992) 11-20

SOLUTION OF SYSTEM OF HIGH-ORDER
DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS VIA
BLOCK-PULSE FUNCTIONS

Rafat Riad (Cairo, Egypt)

1. Introduction

Approximating a function as a linear combination of a set of orthogonal basis
functions is a standard tool in a numerical analysis. Corrington [1] proposed
a method of solving nonlinear differential and integral equations using a set of
Walsh functions as the basis. His method is aimed at obtaining piecewise constant
(approximate) solutions of dynamic equations, and requires previously prepared
tables of coefficients for integrating Walsh functions. To alleviate the need for such
tables, Chen and Hsiao [2] introduced an operational matrix to perform integration
of Walsh functions.

This paper simplifies and is the generalization to the method of Chen and
Hsiao [2] by using block-pulse functions instead of Walsh functions as the basis
for solving a system of high-order differential equations with constant coefficients
simultaneously. First the block-pulse functions are introduced and their properties
briefly summarized [3], [4]. Then the block-pulse function series of t¥, 0 < t < 1,
ke N={0,1,...}, is established. The operational matrix for block-pulse functions
is introduced in [4] and a system of high-order differential equations with constant
coefficients is solved simultaneously by using the block-pulse functions. Finally,
depending on the special properties of the operational matrix, we give a simple
method to compute the solution of the equation obtained in (29) (see Appendix).

2. Block-pulse functions (b.p.f.)

A set of b.p.f. on the unit interval [0,1) is defined as follows [4]: for each
integer 1, 0 <i<mand m € P={1,2,...} the function ¢; is given by

. 1 i+1
1) ¢.-(t)={1 or m St

0 otherwise.
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This set of functions can be concisely described by an m-vector ®(,,) with ¢; as its
i-th component. It is well-known that a function f which is integrable in [0,1] can
be approximated as

m-1
(2) f= ) aid,
1=0

where the coefficients a; are such that
1 el 2
/[f(t)— Ea;q&;(t)] dt
0 1=0
is minimized. In fact, a; is given by

i+1

(3) agzm/f(t)dt, 0<i<m

m

The b.p.f. satisfies the properties

4) bidj = bijbi
and
1
©) [owsrat = s,
0

where 6;; denotes the Kronecker § symbol.

3. B.p.f. series for t*, 0 <t < 1, k€ N and the operational matrix of
integration of b.p.f.

The function t*, ¢t € [0,1), k € N can be approximated as a b.p.f. series of size
m. Indeed, from (2) and (3), we have

() = Y ar(i)alt),
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where
i+1
m k+1 .\ k41
b= ML) (L
7 ak(l)—m/tdt_ + (m) (m) ]
i
m
Therefore,
@ o m P i1\ P i\ k1 40
Tk+14< m m '
and in matrix form
m
(9) th = Y B (8),

where

w = ()R- G- (E)T).

The first integral of b.p.f. can be expressed by b.p.f. Indeed, from (1) we have

0, 0<t < —,
t m
(11) Jomar={e-L, L
m m m
0 .
1 i+l
m m

The four-interval b.p.f. and their integrals are shown in Fig. 1.
Then (11) can be written as

(12) /¢.(A)d,\ - ( - --> 6i(t) + — 2 6 (0).

j=i+1l

From (8) we have

(13) %’"2:; [('* 1) (#)2] 8i(t).
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Fig.1. B.p.f. and their integrations

Substituting (13) and (4) into (12), we have for 0 <i<m

0/ $i(N)dA =
_mye (ﬂ) -(2) ] 55080 S0+ L 3 4500 =
L AN m ’ m m S
-3 (5) - ()] so- 2o+ £ 5 oo

- Lo+ LT 40
TP 2 et

m Ny
J=i+1
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Therefore, we can write the relationship between b.p.f. and their integrals in the
matrix form

L1 11 1
f¢0 (2) 1 1 1 ¢0
[ 1 2 1 é
(14) == 00 31 1 :
f¢m—l 00 0 0 ; ¢m—l
or in more compact form
t
(15) /Q(m)(z\)d/\ ~ B¢(m) (t)
0

B is called the operational matrix which relates the b.p.f. and their integrals.
The operational matrix B is a triangular matrix and it has some properties which
reduce the calculations in solving a system of differential equations.

4. Solutions of system of high-order differential equations with constant
coefficients

Consider the following system of differential equations of order r (r > 1) with
constant coefficients

(16) X043 4, X0 = By, XD(0)=X{ (i=0,1,...,r=1),
k=1

where X is a vector of n components, U is an input vector of £ components,
A; (1=0,1,...,7— 1) are n x n matrices and E is n x £ matrix. For solving this
problem by the b.p.f., we expand X(™), U in b.p.f. series of size m

m-1
(17) X = Y " cigi = CO(my,
i=0

(18) U~ HQ(,,,),

where ¢; is n-vector and forms the i-th column of the n x m matrix C and H is
£x m matrix. The elements of the matrix C are yet unknown, whereas the elements
of H can be obtained for a given input U by applying (3).
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Now integrating (17) from 0 to t and using (15) we get
(19) X('—l) =CB<I>(m)+X(()r_l).

In fact, the k-th integration of (17) yields

k o ki
(20)  XT=B)(t) = CB*®(m)(t) + Exf,"')(l:—_i—)' (k=1,2,...
i=1 ’
(te[o,1)).
From (9) and (10) we have
ki m T
(21) F=o S Eoir i tm®:
Substituting (21) into (20) we get
(22) X8 = CB*®(1n) + ZiB(m),
where
: m (r—1)
_ r=i) T
(23) Zy ‘"‘;(k- o e

is an n X m constant matrix.
Substituting (17), (18) and (22) into (16), we have

.
(24) C®m)+ Y _Ar—k (CB* + Z) ®(m) = EH®(m).
k=1
Therefore,
.
(25) C=-Y A_+CB*+V,
k=1
where
(26) V=EH-) A_+Z
k=1

iS an n X m matrix.



Solution of system of high-order differential equations 17

Let vo,v1,...,m—1 be the columns of V, then (25) is expressible as follows

(27) [Co,Cl, .. -,cm—l] = —ZA,-_&[Co,Cl, .. .,Cm_l]Bk + [vo, V1,... ,vm_l].
k=1

Using the Kronecker product technique introduced by Chen and Hsiao [2], we
rearrange C as a vector with nm components by changing its first column into the
first n components of the vector. and then the second column, etc.; and rearrange
V in the same manner, finally we obtain

Co Co Yo
c T c1 v
(28) = A BYTI L |+ L |
: k=1 : :
Cm-1 Cm-1 Um-1

where A,_; ® (B*)T is the Kronecker product of the two matrices (see Appendix).
The solution of C comes from (28) directly,

Co 1 Yo
(5] r [51
(29) =+ A0 (BYT E
: k=1 :
Cm—1 Um-1

where I is the nm x nm identity matrix.

After C is determined the solution X is easily found by substituting C into
(22), namely

(30) X = CB'Q(,,,) + Z,-(I)(m).

A question arises now. ”How many terms m of b.p.f. should we use?” If we
wish to obtain a quick answer and to sacrifice accuracy, we can use small number
for m, say, let m < 8. On the other hand, if we want accurate answer and do not
care about computation time, we can use very large value for m, say, m > 128. We
notice that, if we use (29) directly to solve a system of six differential equations via
the b.p.f. of size m = 128, some difficulties might occur in obtaining the inverse of
a square matrix of 768 x 768.

According to the properties of the operational matrix B, a simple method is
established to solve C' from (29).
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Appendix

In this appendix we give a simple method to find the inverse of the matrix
r
I+ Y A @ (B* )T] depending on the special properties of matrix B and then
k=1

the solution C from (29) is easily obtained.
First we note that the matrix B is triangular and has the form

,-b(ll) b(gl) bgl) bSI) bg) -

0o bY &M s L a8
(31) B:% o o " &Y . oa® ],
Lo 0 0 0 BV |

where
=1 and 8V=2 (i=23,...,m).

An elementary calculation shows that the powers B¥ (k > 1) has the form

Fo8) BB By %) T
0 5" 5" B &)
i
1
(32) B":—-—(2m)k 0 o b P e
Lo 0o 0 o0 B®

where the elements of B* are given by the following recursive formulae:

b(l") =1,

(33) RO R
bEJ) = Zbgj_l)bgl_)a-}-l (] = 2)3) .o )k; i= 2)3)' . ’m)'
s=1
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Consequently,
A ® (Bk)T =
[ A, 0 0 0 7
o) ¥IA . A 0 0
=(2IT b(ak)Ar—k b(zk)Ar—k Ar——k 0
m
604, b A b A . A
Therefore,
P, 0 0 0
r P, P 0 0
(35) I+ A 0B =P P B 0],
k=1 . : :
Pm Pm—l Pm—2 Pl
where
(36) P, —I(nxn)+‘§(2 )k
and
r b(k) )
(37) P, = 2(2 7 Aoy (i=2,3,...,m)

are n X n matrices.
Now a simple form for the inverse of the matrix in (35) is obtained. Indeed

Ry 0 0 0
r -1 Rz Rl 0 0
(38) I+Y A @B =|Rs R R 01,

k=1

R;n Rﬂ;—l Rn;—-2 e Iél
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where R;, i =1,2,...,m are n X n matrices determined by the following recursive
formulae
R, = Pl_l,
(39) — .
Ri=-Y RiP_juR; (i=23,...,m).
j=1

Substituting (38) into (29), the solution C is easily obtained
Jj
cj:ZRj_,'+1v.' (j=0,1,...,m—1).
i=0

In the above method we always work with matrices (P,R) of n x n, and
the inverse of only one n x n matrix, P, is computed. Therefore, we have
saved computing time and storage. In addition we have reduced round-off errors
significantly.
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