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Abstract: A new type algebra, which is so called interval algebra is intro-
duced. The equational class M of all interval algebras is characterized and the
relationship between interval algebras and other algebras are studied.
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1. INTRODUCTION

Fuzzy mathematics, which was initiated by Zadeh [3| in 1965, has been
rapidly developed, the manifold applications of which ranging from engineering
and computer science to social science. Interval algebra is the algebra abstract of
fuzzy logic system in fuzzy mathematics just as Boolean algebra abstracting the
two valued propositional calculus. The main purpose of this paper is to investigate
the various properties of interval algebras. '

2. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1. An interval algebra is an algebra (M,+,:,—,~,0,1) of type
(2,2,1,1,0,0) whose reduction (M,+,-,—,0,1) is a De Morgan algebra and
such that for all z,y € M,

(1)
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(5) Ty = ij+ zy + z§
(6) z+z+z=1. 0

Obviously, the class I of all interval algebras is an equational class.

Example 2.1. Let B = (B,+,-,—,0,1) be a Boolean algebra. Define “~” by
setting Z=1 for all z € B. Then (B,+,:,—,~,0,1) is an interval algebra.

Example 2.2. Let M = M; whose Hasse diagram is depicted in Figure 1. Define
“~” by setting @ =1, 0 = 1 = a. Then (M,+,,—,~,0,1) is an interval algebra
which is called standard snterval algebra.

5 Lyi— L,

e 1 = 0
a = a lILl Ibgl
| ,
0o = 1 Ll——"L2
Fig. 1. Fig. 2.

Theorem 2.1. Let M = (M,+,-,—,~,0,1) be an interval algebra. Then

(1) 5=z

(2) =5y +y
B) z+y=12
(4)
()

() If 2<y<0 or

— o . - . —w ~— - -~ — . .

(2) zyz +y = (Z§ + zy§ + Zy)(Z§ + T§ + Ty) = Z§ + Tyy + 23§ = Z§.
— —. e . . . - . - o~
B)z+y+zy=32§+zy+zy+i+iy+zy=3(y+y+§)+§(z+Z+3)=%+9.
— ~ - e% T —w -
(4) Since 2+ z =1, we have 2+% =1=1=0. Thus ZZ+ %% + %z = 1
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(5):cz<:c implies £ < 2z =T+ z = Z. Since 2z = %, % = Z = %, we have

Z < %. Therefore < 31 =1=

-
-~

(6) f z < y <0, then zy = z, we have % = Ty = #j + 2§ + y. Since
i>%%=0>y> z, i§ > z§. Similarly, Zj > Zy. Hence % = {, i.e
is similar to prove the second assertion. ]

Suppose S is a nonempty subset of an interval algebra M, [S] denotes
the interval algebra generated by S,i.e. [S] is the smallest interval algebra that
contains S. Such [S] is characterized by the following theorem.

Theorem 2.2. Let S be a nonempty subset of an interval algebra M. Then

[S]={i1rT,-|T.-§SU§U.§U§, n>1} (1)

=1

where AGB denotes that A 1s a finite nonempty subset of B, S = {z| z €
S}, § = {i| z € S}. 0

Proof. Let A equal to the right of (1). For any z € M, setting T\ = {z}, T, =
{z}, Tz = {Z}, we have 1=z +Z+ 3% = E?=l xT; € A. Setting Ty = {z,%,%}
we have 22 =z + 2+ % = 1—0—z:1rT4€ A.

For any T;, SJ-gSUSUSUS' , (1=1,...,n, 7=1,...,m). It is easy to
show that 3°0 \ #T;+ 37" 7S, € A, Y a7 nS; €A and 10 T =

e ——
M, >XTi€ A Y! , nT; € A follows immediatelly by induction. Therefore A

is an interval algebra. If M’ D S is an interval algebra, then M' D SuSus U§.

Thus A C M'. That competes the proof. |
Theorem 2.8. Let M = (M,+,-,—,~,0,1) be an interval algebra. Then 6 1s
a congruence relation on (M,+,-,—,~,0,1) if and only if 6 1s a congruence
relation on (M, +,-,~,0,1). O

Proof. We only prove that (z,y) € § implies (Z,y) € 6 for all z,y € M.
Suppose (z,y) € 0, we have (Z,y) € 6, (?z',?}) = (z+Z,y+9Y) € 6. Since
(,Z) € § and (§,§) € 6, so (i%,%§) € 6 and (§%,§y) € 6. It follows that
(25,0) € 6, (§%,0) € 6. Thus (Z§,§z) € 6. Therefore (%,§) = (Z(§ + ), 9(Z +
Z)) = (3§ + 2§, 5§ + %) € 6. [

3. COPRODUCTS OF INTERVAL ALGEBRAS

For a lattice L; the elements of L are the same as the elements of L but
a<binklifandonlyifa > bin L. The map I, : L —» L is defined by
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Ip(a) = a for a € L. Note that a < b < Iz;(a) > IL(b) for a,b € L. If
f: Ly — L3 is a homomorphism between lattices then f : Ll — Lg is defined
by f(IL,(a)) = I, (f(a)) for a € L,. Obviously, f is a lattice homomorphism and
the diagram commutes (Fig. 2.).

Note that if f; : Ly — L3, fo : L, — L3 are lattice homomorphisms, then
Nom—
faofr=fao fi.

Lemma 8.1. If M 1s an interval algebra, then M can be made into an interval

—
algebra by defining Ins(z) = Ing(Z), Ine(2z) = Ine(2). m]
Proof. Straightforward. [ |

Theorem 38.1. Let f, : M; — M, be a homomorphism between interval algebras.

Then ]1 : Ml — Mg 13 also a homomorphism. Moreover, if fo : My — M3 1s
A ——
another homomorphism between interval algebras then fao f; = fg o fi. ]

Proof. Trivial. [ ]

Theorem 38.2. Let (M,),cs be a family of interval algebras, M €M and let
(4 : My — M),es be a coproduct of (M,),es. Then (;, ‘M, — M).es isa
coproduct of (M.).es- m]

Proof. It follows from Lemma 3.1. that (M.).es is a family of interval algebras.
Suppose (f, :‘ICI, — L),es be a family of homomorphisms between interval
algebras. By Theorem 3.1. (f. : M, — L),es is also a family of homomorphisms
between interval algebras. Since (j, : M, — M),cs is a coproduct of (M,),es,

there exists a unique homomorphism f: M — L such that fog,= /Y, for all

s€S. Thus foj, = foj,=f, forall s€ S. Therefore (5, : M, — M) isa
coproduct of (M,),es. [

4. THE EQUATIONAL CLASS OF INTERVAL ALGEBRAS

The following example shows that the equational class of interval algebras M
is an equational proper subclass of the equational class of De Morgan algebras
DM.

Example 4.1. M = ([0,1],V,A,—,0,1) is a De Morgan algebra, where Vv =
max, A =min, Z=1—z for all z € [0,1]. Then we can not make M into an
interval algebra.
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Proof. Suppose there is a unary operation “~” on [0,1] such that M =
([0,1],v,A,—,~,0,1) is an interval algebra. Then for z € [0,1] we have
zVZIVZ =1 Thusfor z#0Oor 1, we have Z=1 and i= 1,ie. zvZ=1. But
z=0.7€[0,1]y=05€[0,1] and zVZ=0.7v0.3=0.7 # 0.5 = 0.5V0.5 = y V7,
contradicting to zVZ =1 is a constant. |

Kalman (2] has proved that the subdirectly irreducibles in DM are M,, M,
and M,.

The Hasse diagrams of My, M; and M are depicted in Figures 3, 4 and 5,
respectively.

2
1 ith 1=1 a b with a=a,b=b
0 ()
Fig. 3. Fig. 4. Fig. 5.
Theorem 4.1. The subdirectly srreducibles sn M are My and M, . O

Proof. Obviously My and M, are the subdirectly irreducibles.

To prove M is not subdirectly irreducible we show that A4, is not a meriver
of M.

Suppose M, is an interval algebra. For a € M we have @ = a an‘
a+a+a =1, thus a+a = 1, which iinplies @ = 6. On the other Lhand

c:1=a+5=a,so i=0=3a3=ab=0. Therefore U=1=0=1=1+1=1isa
contradiction. Hence M is not an interval algebra. This completes the proof. ®

Corollary . Let M €M. Then M 1s a subdirect product of copies of My and
M. O

5. RELATIONS WITH OTHER ALGEBRAS

Theorem 5.1. Every interval algebra 1s a Kleene algebra. ]

Proof. Let M be an interval algebra, obviously M is a De Morgan algebra. For
all z,ye M, 22<% and z2<z+Z =172 implies 272 <33 =0=§y< §=y+7.
Therefore M is a Kleene algebra. |
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Theorem 5.2. Let M be an interval algebra. Then M 1s a Boolean algebra if
and only if 1=1. ]

Proof.If 1=1 then z2=1=1 implies Z=z+z=1 and zz=0. Thus Z
is the complement of z. Therefore M is a Boolean algebra. Conversely, if M is

a Boolean algebra, then 1= i=1 +i=1. ]

Definition 5.1. Let L be a De Morgan algebra. (L) ={z€ L|z+Z=1, zT =
0} is called the center of L.

a

Theorem 5.8. Let M be an interval algebra. Then Vze M z € C(M) if and
only if 2=0. 0

~ B P
Proof. If z€ C(M) then Z=Z%+z(z+2Z)=2Zz+zz+%Z = 2Z = 0. Conversely,

if =0 then =10 = 1, which implies z+z =1 and zz = 0, therefore

z € C(M). =
Theorem 5.4. Let M be an interval algebra such that 0=0. Then M? = {z €
M|z=a0+b, a,b € C(M)} is a Post algebra and C(MP) = C(M). a
Proof. Straightforward. [ ]

Theorem 5.5. Let M = (M, +,-,—,~,01) be an interval algebra, M= {Z|z €
M}. Then (M,+,-,~,0,1) is a Boolean algebra. ]

Proof. For z € M, 0=z <z<l1l= (:) € M implies that 0 and 1 are the lowest

and grea.test element in M respectively. For z, y € M, since 0 < zj < %+ g, we

— — ~ — e~ —
have zy>:t:+y Thus, z+y—:+y+zy—zy and :cz—z+y:ry—z+y,
which implies that “~” satisfies the De Morgan law on M . Also we have z+ ¢ =
: =z <3 2 T2 . =

z+y—z EM, §=5:§=5:+§€M,i=5:,5§':=6,5: % = 1. Therefore
(M,+,+,~,0,1) is a Boolean algebra. |
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