FUZZY LINEAR SYSTEMS

Ketty Peeva

Institute of Applied Mathematics and Computer Science Sofia, 1000. P.O. Box 384

Abstract: The resolution problem for fuzzy linear systems of equations and inequalities over a bounded chain is studied. The main results are concerned with compatibility, computing solutions or marking the contradictory equations (resp. inequalities).

Keywords: Fuzzy linear systems, fuzzy equations, fuzzy inequalities.

1. PRELIMINARIES

The resolution problem for fuzzy relation equations has been set by E. Sanchez [5]. Following his fundamental result for the greatest solution, many other authors proposed thoroughly investigations for a variety of special resolution problems [1,2,3].

The purpose of this paper is to give a unified approach to the resolution problem for fuzzy linear systems of equations and inequalities over the bounded chain. We consider the problem of solving fuzzy linear systems of equations $A \cdot X = B$ and inequalities $A \cdot X \geq B$, $A \cdot X > B$, $A \cdot X < B$ in \mathbb{L} . Polynomial time algorithms are proposed for computing:

- (i) is the system consistent or not;
- (ii) if the system is consistent when is the solution unique; what are its greatest, lower and maximal solutions;
- (iii) if the system is inconsistent which are the numbers of the contradictory equations (resp. inequalities).

The complete text with all proofs, examples and applications is subject to [4]. Let $I\!\!L=(L,\vee,\wedge,0,1)$ be a bounded chain over the totally ordered set L with universal bounds 0 and 1, with operations join \vee and meet \wedge . Let $I,J\neq\emptyset$ be finite sets of indices. $a:I\times J\longrightarrow L$ be a map and $I\!\!L^{I\times J}=\{a|a:I\times J\longrightarrow L\}$ be the set of all maps from $I\times J$ to $L;\ A=(a_{ij})\in I\!\!L^{I\times J}$ is called a matrix over L if $a_{ij}=a(i,j)$ for each $i\in I$ and each $j\in J$.

The matrix $C = A \cdot B = (c_{ij}) \in \mathbb{L}^{I \times J}$ such that

$$c_{ij} = \bigvee_{k=1}^{|K|} (a_{ik} \wedge b_{kj}) \text{ for each } i \in I, \ j \in J.$$

is called product of $A = (a_{ij}) \in \mathbb{L}^{I \times K}$ and $B = (b_{ij}) \in \mathbb{L}^{K \times J}$.

The finite matrices A, X and B denote coefficients, unknowns and constants respectively for the system under study. $\{1\}$ stands for the singleton set, $|I| = m \in IN$, $|J| = n \in IN$ denote the cardinality of I and J respectively.

The system of linear equations is written more briefly as

$$\vee_{j \in J} (a_{ij} \wedge x_j) = b_i, \ i \in I \tag{1}$$

We shall write shortly $A \cdot X \ge B$, $A \cdot X > B$, $A \cdot X \le B$, $A \cdot X < B$ respectively for the systems (2), (3), (4), (5) below:

$$\vee_{j \in J} (a_{ij} \wedge x_j) \ge b_i, \ i \in I \tag{2}$$

$$\forall_{j \in J} (a_{ij} \land x_j) > b_i, \ i \in I$$
 (3)

$$\vee_{j\in J}(a_{ij}\wedge x_j)\leq b_i,\ i\in I\tag{4}$$

$$\forall_{j \in J} (a_{ij} \land x_j) < b_i, \ i \in I$$
 (5)

where $A = (a_{ij} \in \mathbb{L}^{I \times J}, \ X = (x_j) \in \mathbb{L}^{J \times \{1\}}, \ B = (b_i) \in \mathbb{L}^{I \times \{1\}}$ and for all of them we suppose $b_1 \geq \ldots \geq b_m$. If the notions, definitions or results are valid for any of them, we write $A \cdot X \perp B$.

Let the system $A \cdot X \perp B$ be given. The row-matrix $X^0 = (x_j^0) \in \mathbb{L}^{J \times \{1\}}$ is a point solution of $A \cdot X \perp B$ if $A \cdot X^0 \perp B$ holds. The set of all point solutions of $A \cdot X \perp B$ is denoted by K^0 . If $K^0 \neq \emptyset$ then $A \cdot X \perp B$ is called consistent, otherwise it is inconsistent. $X^0 \in K^0$ is called lower point solution of $A \cdot X \perp B$ if for any $X^0 \in K^0$ the relation $X^0 \leq X^0$ implies $X^0 = X^0$, where \leq denotes the order, induced in K^0 by this of \mathbb{L} . Dually, $\overline{X}^0 \in K^0$ is an upper point solution, if for any $X^0 \in K^0$ the relation $\overline{X}^0 \leq X^0$ implies $\overline{X}^0 = X^0$. An interval $X_j \subseteq L$ is called feasible for the j^{th} component of the solution, if the choice of any $x_j \in X_j$ does not result in a contradiction in the system. An n-tuple (X_1, \ldots, X_n) of feasible intervals $X_j \subseteq L$ is called an interval solution if any $X^0 = (x_1^0, \ldots, x_n^0)$, such that $x_j^0 \in X_j$ $(j = 1, \ldots, n)$ belongs to K^0 . The interval solution, which is maximal with respect to this property, is called maximal interval solution.

Two systems are called equivalent if each solution of the first one is a solution of the second and vice versa.

We assign to the system $A \cdot X \perp B$ a new system $A^* \cdot X \perp B$ with an augmented matrix $(A^* : B)$. The matrix $A^* = (a_{ij}^*)$ is carried out from A with respect to B according to (6):

$$a_{ij}^* = \begin{cases} S, & \text{if } a_{ij} < b_i; \\ E, & \text{if } a_{ij} = b_i; \\ G, & \text{if } a_{ij} > b_i. \end{cases}$$
 (6)

Lemma 1. The systems $A \cdot X \perp B$ and $A^* \cdot X \perp B$ are equivalent.

Let the system $A \cdot X \perp B$ be given. The time complexity function for obtaining the equivalent system with $b_1 \geq \ldots \geq b_m$ is $O(m^2)$; The time complexity function for computing $(A^* : B)$ is $O(m \cdot n)$.

2. FUZZY LINEAR SYSTEMS IN L

An unified method is presented for solving $A \cdot X \perp B$ in IL, resulting in: the necessary and sufficient condition for consistency of any linear system in IL as an analogue of the Kronecker - Kappely Theorem; the greatest and lower solutions; a polynomial time algorithm for computing: is the system consistent or not; if it is inconsistent - why; if it is consistent - all its solutions.

Whenever $A \cdot X \perp B$ is given, we shall suppose $(A^* : B)$ is computed. According to Lemma 1 we study $A^* \cdot X \perp B$ instead of $A \cdot X \perp B$. We assume the requirement $b_1 \geq \ldots \geq b_m$ is satisfied; we denote by k the greatest number of the row with G-type coefficient in it and by r the smallest number of the row with E-type coefficient in it.

Theorem 1. Let the system $A \cdot X = B$ be given

- i) If the jth column of A* contains $a_{kj}^* = G$, then:
 - a) $X_i = [0, b_k]$ is a feasible interval for the jth component;
 - b) $x_j = b_k$ implies $a_{ij} \vee x_j = b_i$ for i = k, for each i < k with $a_{ij} > b_i = b_k$ and for each i > k with $a_{ij} = b_i$;
- ii) If the j^{th} column of A^* does not contain any G-type coefficient, but it contains E-type coefficient $a_{rj}^* = b_r$, then:
 - a) $X_j = L$ is the feasible interval for the j^{th} component;
 - b) $x_i \in [b_r, 1]$ implies $a_{ij} \wedge x_j = b_i$ for each $i \geq r$ with $a_{ij} = b_i$;
- iii) If the j^{th} column of A^* does not contain neither G-type, nor E-type coefficients then the feasible interval is $X_j = L$ and $A_{ij} \wedge x_j < b_i$ holds for any $x_j \in L$. \square

We denote by G, E respectively all G or E coefficients selected to satisfy the i^{th} equation by the term $a_{ij} \wedge x_j = b_i$ due to Theorem 1 (i), (ii). Those G and E coefficients are selected.

Corollary 1. Let the system $A \cdot X = B$ be given.

- i) It is consistent iff there exists at least one selected coefficient $A_{ij}^* \in \{G, E\}$ for each $i \in I$. If there exists an equation with no selected coefficient, then this equation is in contradiction with the others;
- ii) The time complexity function for establishing the consistency of the system is $O(n \cdot m^2)$.

Corollary 2. Let the system $A \cdot X = B$ be consistent. Then it has unique greatest solution $X_{gr} = (x_j)_{n \times 1}$, where:

$$x_j = \begin{cases} b_k, & \text{if the } j^{th} \text{ column of } A^* \text{ contains } G\text{-type} \\ & \text{coefficient due to Theorem 1 (i)(b);} \\ 1 & \text{otherwise.} \end{cases}$$

The time complexity function for computing X_{ar} is $O(m \cdot n)$.

Let $A \cdot X = B$ be consistent. It means that in any equation

$$(a_{i1} \wedge x_1) \vee \ldots \vee (a_{in} \wedge x_n) = b_i, i \in I$$

there are only terms with $a_{ij} \wedge x_j \leq b_i$ and the equality $a_{ij} \wedge x_j = b_i$ holds only for G and E coefficients in this equation. Let $J_i = \{j | j \in J, \ a_{ij} \wedge x_j = b_i\}, \ i = 1, \ldots, m$ stand for the set of the second indices of all E and G coefficients in the i^{th} equation. We define the help matrix $H = (h_{ij})$:

$$h_{ij} = \begin{cases} b_i & \text{if } a_{ij} \wedge x_j = b_i \text{ holds for } j \in J_i \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 3. For any linear system $A \cdot X = B$

- i) (A:B) and $(A^*:B)$ have the same H;
- ii) the time complexity function for computing H is $O(m \cdot n)$.

Using H, we can compute all the lower and maximal solutions [4].

Corollary 4. If the system $A \cdot X = B$ is consistent, then the set of all its lower solutions is finite and computable.

Algorithm 1 (for solving the system $(A \cdot X = B)$.

- 1. Enter the matrices $A_{m\times n}$, $B_{m\times 1}$ (|I|=m, |J|=n).
- 2. Compute the matrix $(A^*:B)$.
- 3. Erase the vector IND and the help-matrix $H = (h_{ij})_{m \times n}$.
- 4. $X_{ar}(i) = 1$ and $X_{low}(i) = 0$, i = 1, ..., n.

- 5. j = 0.
- 6. i = i + 1
- 7. If j > n go to 10.
- 8. If the j^{th} column in A^* does not contain any G-type coefficient, go to 9. Otherwise take the greatest number k of the row with G-type coefficient in the j^{th} column of A^* . Put $X_{gr}(j) = b_k$, IND(i) = IND(i) + 1 and $h_{ij} = b_i$ for i > k with $a_{ij}^* = b_i$. Go to 6.
- 9. If the j^{th} column in A^* does not contain any E-type coefficient, go to 6. Otherwise take the smallest number r of the row with E-type coefficient in the j^{th} column of A^* . Put $X_{low}(j) = b_r$, IND(i) = IND(i) + 1 and $h_{ij} = b_i$ for i = r and for each i > r whith $a_{ij}^* = b_i$. Go to 6.
- 10. If IND(i) = 0 for some i = 1, ..., m then the system is inconsistent. IND(i) = 0 means that the i^{th} equation is in contradiction with the others. Go to 13.
- 11. If $IND(i) \neq 1$ for some i = 1, ..., m, go to 12. Otherwise the system is consistent with a unique maximal interval solution stretched on X_{low} and X_{gr} . Go to 13.
- 12. The system is consistent, X_{gr} contains the greatest point solution. A method for computing the lower point solutions and the maximal interval solutions is given in [4].
- 13. End.

Theorem 2. Let the system $A \cdot X \geq B$ be given.

- i) If the jth column of A* contains $a_{kj}^* = G$ then:
 - a) $X_j = [b_k, 1]$ is a feasible interval for the j^{th} component;
 - b) $x_j \in [b_k, 1]$ implies $a_{ij} \wedge x_j \ge b_i$ for i = k, for each i > k with $a_{ij} > b_i = b_k$;
 - c) for i > k; if $a_{ij} = b_i$ then $x_j \in [b_k, 1]$ means $a_{ij} \wedge x_j = b_i$;
 - d) for i < k: if $a_{ij} = b_i$ then $x_j \in [b_r, 1]$ means $a_{ij} \wedge x_j = b_i$;
- ii) If the j^{th} column of A^* does not contain any G-type coefficient, but it contains E-type coefficient $a_{rj}^* = b_r$, then:
 - a) the feasible interval is $X_j = [b_r, 1];$
 - b) $x_j \in [b_r, 1]$ implies $a_{ij} \wedge x_j = b_i$ for each $i \leq r$ with $a_{ij} = b_i$ and there does not exist $x_j \in L$ such that $a_{ij} \wedge x_j > b_i$.
- iii) If the jth column in A^* contains only S-type coefficients, then $a_{ij} \wedge x_j < b_i$ for each $x_j \in L$.

Let the system $A \cdot X \geq B$ be given. It is inconsistent iff there exists at least one inequality with neither G- nor E-type coefficient in it. The time complexity function for establishing the compatibility of the system is $O(m \cdot m)$. If the system

 $A \cdot X \geq B$ is consistent, then it has a unique greatest solution $X_{gr} = (1, \dots, 1)^t$ and a finite number of lower solutions.

Algorithm 2 (for solving the system $A \cdot X \geq B$).

- 1. Enter the matrices $A_{m \times n}$, $B_{m \times 1}$ (|I| = m, |J| = n).
- 2. Compter the matrix (A^*B) .
- 3. Erase the marker vector IND and the help-matrix $H = (h_{ij})_{m \times n}$.
- 4. $H = A^*$. For each i = 1, ..., m, IND(i) is equal to the number of $h_{ij} \ge b_i$ in the i^{th} row.
- 5. If IND(i) = 0 for some $i \ge m$, then the system is inconsistent. Go to step 7.
- 6. Consult [4] to compute $\{X_{low}\}$, X_{qr} and $\{X_{max}\}$.
- 7. End.

The systems $A \cdot X \leq B$ and $A \cdot X < B$ are always consistent: the sero solution $X_{low} = (0, ..., 0)^t$ is its unique lower solution.

Theorem 3. Let the system $A \cdot X \leq B$ be given.

- i) If the jth column of A* contains $a_{k,j}^* = G$, then for any $x_j \in [0, b_k]$ and:
 - for i = k the inequality $a_{ij} \wedge x_j \leq b_i$ holds;
 - for i < k and $a_{ij} > b_i$ the inequality $a_{ij} \wedge x_j \leq b_i$ holds;
 - for any $a_{ij}^* = b_i$, $a_{ij} \wedge x_j \leq b_i$ for any $i \in I$.
- ii) If the jth column in A* does not contain any G-type coefficient but it contains E-type coefficient then L is a feasible interval for the jth component of the solution and $x_j \in L$ means $a_{ij} \wedge x_j \leq b_i$ for each i = 1, ..., m.
- iii) If the jth column in A* contains only S-type coefficients then $a_{ij} \wedge x_j < b_i$ for each i = 1, ..., m and any $x_j \in X_j = L$.

For solving $A \cdot X > B$ and $A \cdot X < B$ a slight modification of these results is valid [4].

Theorem 4. The following problems are algorithmically decidable in polynomial time for the system $A \cdot X \perp B$:

- i) whether the system is consistent or not;
- ii) if the system is consistent, computing all its solutions.
- iii) obtaining the numbers of the contradictory equations if the system is inconsistent.

REFERENCES

[1] A Di Nola at all, Fuzzy Relation Equations and their Application to Knowledge Engineering, (Kluwer Academic Press, 1989).

- [2] J. Drewniak, Fuzzy Relation Calculus, (Universitet Salski, Katowice 1989).
- [3] M. Kovács, On the g-fuzzy linear systems, BUSEFAL 37(1988) 69-77.
- [4] K. Peeva, Fuzzy linear systems, Fuzzy Sets and Systems (to appear).
- [5] E. Sanches, Resolution of composite fuzzy relation equations, Inf. and Control 30(1976) 38-48.