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Abstract: The paper discusses a predicate logic of modifier operators. A
formal semantics of modifier logic is given, and a sound axiom system for that
is developed. We call this logic a system of LPC+ Ch (standing for the words
Lower Predicate Calculus with additional Characteristics of modifiers’). Some
alternatives for the application topics, and both similarities and differences with
some non-classical logics are discussed.
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1. C-STRUCTURES

The alphabet of the Ch-language are as follows. The connectives — standing for
negation, — standing for implication, as primitives, and connectives A standing for
disjunction, V standing for conjuction, and « standing for equivalence are derived
from those in the known classical way. We adopt the set of predicate symbols IP =
{pP|n=1,2,...; +=0,1,2,...} and the set of function symbols IF = {f* | n =
1,2,...; 1= 1,2,...} straight from LPC. We further need some added characters
for formalizing a set of characteristic operator symbols © = {Q, #;, %2,...} where the
operators 7, %2, ... are substantiating and Q is an tdentity operator. We can denote
these modifier operators by metavariables ¥, ¥, V,... (with or without numerical
subscripts). For any modifier ¥ € O, we can form its dual modifier ¥* = -~ ¥, and
the set of duals we symbolige by O*. Clearly #** = 7. For the indentity operator
< it holds @* = Q. Modifiers belonging to ©O* are called weakening operators. The
formation of well-formed formulae (wffs) is as follows:

Definition 1.1. If § = (IF, IP, O) is the symbolic alphabet, then the set of
S-formulae, or wifs, W is the smallest set W for which it holds

(1°) the set W of wffs of LPC is a subset of W;
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(2°) f a € W and 7 € O then F(a) € W;

(3°) if a € W then —a € W;

(4°) if a,f € W then (a — B) € W;

(5°) if a € W and z is a variable then Vz: a € W.

(6°) All the wffs are generated by the steps (1°) — (5°). 0

We give the model theory of the Ch-language as follows:

Definition 1.2. A (Kripke-type) Ch-structure is an ordered triple
U= <P(U),R, P),

where U is a universe of worlds, P(U) is the power set of U, R is any relation on
U, so-called accessibilsty relation for U, and ¢ is a function ¢ : INg — P(U) which
defines for each n-ary predicate symbol p?, ¢ € INy a set ©(t) of world where p? is
true for a given assignment of elements a;,...,a, to z;,...,Zn. @]

So ¢ defines for each world u € U a set of predicates, which are true in u for
a given assignment, i.e. a set

{p? | u € p(s)}.
The corresponding set for a combined wff a is
{a|u€palts,...,5k), 3 € No, 7=1,...,k},
where a consists of k atoms. For any R there is also a subrelation system
R,CR;Cc...CR,C...CR

associated with the modifiers #;, %,..., %,,... Further, ¥(u) is the domasn of u.
Intuitively it means that y(u) is the set of all individual constants existing in u. A
world system corresponding to U is an ordered pair

K =(P(U),R)

Definition 1.8. For each wff « € W and each modifier ¥ € O there is a mapping,
the universe of ¥ € O corresponding to a € W,

n:Wx0— P(U)

such that
(i) n(p?,9) = p(s);
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(11) if n(a,I) = A then for each F; € O there is
n(a, %) = AU {u|for all t € p4(iy,...,ik), tR;u};
(iii) if n(a, 7;) = A then n(-a, 7;) = 4;
(iv) (e, %) = A, and n(8, %) = B then n(a — 6, %) = AU B;
(v) n(Vz a,%;) = A, where for all u € A, z € y(u). o

It is natural to define the mapping n : W x O* — P(U) in similar way such
that 7; and the corresponding 7" has the same universe.

Definition 1.4. Given two modifiers 7;, i € O, if for any a € W, n(a, ;) C
n(a, %) in a Ch-structure U, we say that 7 is at least as strong as F; in U,
abbreviated by 7;3%7..

For the corrsponding duals 7, " € 0*, if for any @ € W, n(c, ) C n(a, 7,‘)
in a Ch-structure U it holds .?;-‘jufk‘.

If f,jufk holds for all structures U, we say that 7 is at least as strong as 7,
abbreviated by ¥; X%, where either 7;, % € O or 7;, #,€ O*. m]

We give the following truth definitions:

Definition 1.5. The truth of a wff a in a world u € U of U abbreviated by =¥ a,
is defined recursively as follows:

(i) a=p) =k aiff u € p(i);
(ii) a = pP(z1,...,2,) =Y a iff, given an assignment of elements a,,...,a, €
S™ to z1,...,Zn, where S C |J ¢(u), the n-tuple (ay,...a,) € o(t).
u€U

(iii) a = -8 =>EY a iff not =¥ B;
(iv) a=f— =L iff =l B =Fd 7,
(v) a=9(8) =K o iff =L B;
(vi) a= 7(B) = Uyaiff A € P(U) is a universe of ¥ corresponding to a, u € A,
and for all t € A such that uRt¢ it follows =¥ 8.
(vii) @ = Vz B(z) =Y a iff Y B(a) for every assignment of a , where
a € Y(u). O

By Definition 1.3.(v) it can be derived the corresponding truth rule for the
dual 7* = =¥ of the operator ¥ as follows:

(viii) Y% F*(a) iff A € P(U) is a universe corresponding to 7*, u € A, and there

exists t € A such that uRt and ¥ a. 0

The notions validsty and consistency are first defined in a world system and
then generally.

Definition 1.6. (1°) « is valid in a world system K = (P(U),R), abbreviated by
EX a iff Y a for all Ch-structures U of K and u € U.
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(2°) a is consistent in a world system K = (P(U),R), iff ¥ a for some Ch-
structures U of K and u € U.

(3°) a is valid, denoted by | a iff a is valid in all world systems K =
(P(U),R).

(4°) a is conssstent, iff a is consistent in some world system K. a

(3°) and (4°) can be equivalently defined as follows:
(a) Ea,iff E¢ afor allU = (P(U),R, ), ueU.
(b) a is consistent, iff =¥ a for some U = (P(U),R, ), u€ U.

Proposition 1.1. For any modifiers 7, and 7, € O (when 7 and 7 € 0*) and
for any a € W 1t holds

735 = fala) = (o)
and

3% ok 7 (a) = % (a). .

Proof. Let A; be the universe of %,1 = 1,2, corresponding to a wif a in an
arbitrary Ch-sturcutre U and 7, 7> € O such that 9Z# 3 %.

(1°) From the assumption it follows A; C A; by Definition 1.4. Thus especially
93U 7<U%. If EY %(a) then EY #(a) for any u € A,. This is equivalent to
the fact =¥ o for all t € Ay such that uRt by Definition 1.5.(v). Because of
A; C Ag, this holds also for all t € A, such that uRt, ie. Y F(a). Thus
E¢ %(a) =Y #i(a) from which it follows ¥ #(a) — 7i(a) by Definition
1.5.(iii). The case not =¥ 7(a) for some u € A; is clear by PC. Because U and
its world u were arbitrary, the result |= #(a) — #(a) is correct.

(2°) Suppose = %2(B) — #(B), B € W. From this it follows = -7 (B) —
—~72(B) by PC (and especially by the properties of =’ and —’). Substituting S by
~a we get = ~F(~a) = ~F(—a) which means that = #*(a) — 7' (a) holds by
the definition of ¥*.

Corollary . If ¥ € O then for any a € W it holds
8L & F(a) — S(a)

and
837 & ¥(a) = F*(a)
and thus
837 & Fla) = 7*(a).
Proof. This follows directly from Proposition 1.1 by PC. [ ]

Proposition 1.2. If 7 € O and X € O*, then for any wff a € W it holds
E F(a) = X{a). o

Proof. Let F € O, X € O* and a € W. The case ¥ = 7* is clear by means of the
corollary of Proposition 1.1. Let then ¥ 7*. From this it follows = 7*(a) — ¥(a)
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by Proposition 1.1, and from this and from the fact | F(a) — 7*(a) it follows =
F(a) — X (a) by PC. After this case there is left only one situation, namely #*Z¥.
Thus the both modifiers ¥* and ¥ belong to ©O*. Then for any wff § € W it holds
= X(B) — 7*(B) by Proposition 1.1. From this it follows = —~F*(8) — —-X(B) by
PC. This is the same as |= ¥(—~f8) — X*(—p8) by the definition of duals. Because
X* € O and X € O*, we have | ¥*(—~8) — X(—B) by Proposition 1.1, and finally
we get = F(a) — X(a) when f = —a. This completes the proof. [ |

Let U be an arbitrary Ch-structure. If = a then | U" in any world u
of U by the validity of a. Thus from the fact n(a, %) = AU{u | forallt €
©alt1,..-,tk), tR;u} it follows the condition

Ea®n(a,f)=Uforal 7, € 0.

Proposition 1.8. For any wffs « € W and modifiers ¥ € O

Ea=F #(a). 0

Proof. Suppose ¥=<7 be any modifier, U be any Ch-structure, the universe of ¥
be A € P(U) corresponding to a, and |= a. Then for any Ch-structure U such that
A € P(U) and ¥ a for all u € A, which means that A = n(a, ;) = U for all

7; € O. Thus =¥ 7(a) holds for any Ch-structure U i.e. |= F;(a). [
Proposition 1.4. For any wffs a € W and the identity operator it holds

E ¥a) « a.
Proof. The result follows directly from Definition 1.5.(iv) by PC. |

2. Ch-SYSTEMS

For the proof-theory we give a sound axiomatization for our system LPC+ Ch.
In addition to the axiomatization of LPC we need in our proof-theoretical system
a characteristic azsom schemata governing the logical properties of the modifier
operators. Our axiomatisation for our system LPC+ Ch is as follows:

Axiom schemata of Ch. (i) All the valid wffs of LPC are axioms.
(i) If ¥, F€O,and ¥ZF thenalla e W

Fla) = X(a) (AxCh)

in an axiom.
(i1i) For all wffs @ € W and for the identity operator & € @ it holds

S(a) ~ a (AxId)
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is an axiom.
We also adopt the following inference rules:
Modus ponens:

a—f, akp (MP)

Modified modus ponens:
a— B, Fa)F 7(8) (MMP)

where ¥ € O is an arbitrary operator.
Rule of Substantiation: For wifs « € W and all substantiating operators ¥ € O,

Fa =+ #(a) (RS)

The rule (RS) can be illustrated intuitively by saying that a true fact remains
true even if we try to substantiate it.

So, a Ch-system is any non-empty set X such that the valid wffs of LPC,
(AxCh), and (AxId) are included in X, and X is closed under (MP),(MMP)
and (RS).

We have to prove that all the theorems (i.e. wffs a € W such that I a) of
our Ch-system are valid. this property is called soundness. The proving method is
such that first we prove that the axiom schemata of the Ch-system are valid, and
secondly, the inference rules preserve validity.

Proposition 2.1. (soundness). For any a € W it holds
Fa=kFEa. 0

Proof. (1°) The validity of the valid wffs of W is clear by LPC and Definition 3.1.
(2°) The validity of (AxCh) follows directly from Propositions 1.1 and 1.2.

(3°) The validity of (AxId) follows directly from Proposition 1.4.

(4°) The rule (MP) is clear by LPC.

(5°) Consider the rule (MMP). Let U be an arbitrary Ch-structure, and let |=U
a — B and Y F(a). Suppose first that ¥<7, and let the universe of ¥ be
A€ P(U) for a € W, and u € A. We have

EY F(a) = for allt € A and uRt it follows ¥ a.
Thus =¥ a for all u € A by Definition 1.3.(v). By Definition 1.3.(iii) it follows
from this that |=¥ B for all u € 4, i.e. for all t € A and uRt it follows =¥ 8, which

means that =¥ (). Because U was chosen arbitrarily, we have |= 7(8). Suppose
then that 739, and let the universe of ¥ be A € ¥(U), and u € A. We have

=Y 7(a) = there exists t € A such that uR¢t and ¥ a.
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Thus =¥ a for some u € A by Definition 1.3.(vi). By Definition 1.3.(iii) it follows
from this that |=Y B for those u € A, as |=U a, i.e. there exists t € A such that
uRt and =Y B, which means that =Y 7(8). Because U was chosen arbitrarily, we

have =% (B).
(6°) The rule (RS) is clear by Proposition 1.3. |

$. SOME COMMENTS AND IDEAS

In the above described Kripke-semantics of LPC+ Ch there are some interesting
questions. For example there are no special descriptions about the accessibility
relation R. It can be mainly supposed that R is a binary relation on U. It also
very natural that we can get different Ch-systems, if we give different properties to
R like in modal logic. I think R should be at least reflexive in U for the semantico-
syntactical completeness of the system, i.e. the set of all valid formulae of the
Ch-language is exactly the set of the theorems of the Ch-system. However, this
question is left open in this paper.

There are also interesting possibilities for fussy extensions of the Ch-language.
These come into the question, if we extend the power set #(U) of the universe of
U such that we include fussy subsets of U in P(U). Also these considerations are
not made in this paper.

One possibility to apply the system LPC+Ch is the logic of hedges (see e.g.
(3] and [7], which papers give some ideas for that). In that case a modifier is an
operator ¥ : [0,1] — {0,1}. The idea is as follows: If we interpret the function
p:[0,1]* — [0,1](n = 1,2,...) as truth-function, and for some expression a it
holds u(a) = r (0 < r < 1), we can operate with a weakening operator ¥ on it
such that we get u(¥(a)) = 1. After manipulating all the expressions like a above
we can apply the system LPC+ Ch. After getting the conclusion we use the inverse
operators 7~ for evaluating the value u(B) for the conclusion 8.

Example. Consider an inference of the form

In the first premise we apply modifiers as hedges so that we operate the wif a
by such a weakening modifier ¥ that the truth value of ¥(a) becomes 1, i.e. the
modifier ¥ is a mapping X : [0,1] — {0,1} which mape 0.7 into 1. In the second
premise the truth value of 8 is less than that of a, because the truth value of the
implication is less than 1. We now operate the wff § by such a weakening modifier
V that the truth value of V(B8) becomes greater than that of a. Then by means
of the Calois connection,the implication a — V(8) has the truth value 1. Now we
get the inference



180 Jorma K. Mattila

by MMP. Because in the conclusion f is operated by a chain of two weakening
modifiers, we would need the operation ¥V ™! for getting the truth value of 8 which
in this case must be less that that of any premise in the original inference, i.e. less
than 0.7, say 0.5 or 0.6. The definition of the inverse modifiers 7! are not clear
yet, and there will appear some difficulties with them.

This thing is still just an idea about how to use linguistic approximations
in LPC+Ch to create fussy truth values for conclusions when we know those
values for the premises. One of the main questions is, how well does the system
LPC+Ch fit together with hedges. There are some interpretational problems
which need additional investigations. These problems are not surprising because
the relationship between formal languages and the natural language is always
problematic.
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