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Abstract: Essence of most industrial applications of fuzzy reasoning and
control is some kind of rule based fuzzy inference algorithm. One of the crucial
points in these algorithms is the computational speed i.e. time complexity
(usually in the uniform complexity sense). This paper shows the complexity of
three different algorithms.
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1. INTRODUCTION

A large number of industrial applications of fuzzy logic and fuzzy systems have
appeared in recent years on the market. Reason of this is the fact that even modern
control theory has failed to cope with some classes of control problems in industrial
processes, robotics, vehicles, household equipment, video cameras, etc. etc. The
problem is that classical control theory describes and models only a limited class
of not very complex systems properly.

The basic idea of fuzzy algorithms and especially rule based fuzzy inference
was initially proposed by Zadeh (see Zadeh (1968, 1974, 1975) and many other
papers). The first results of practical implementation are connected with the name
of Mamdani (see Mamdani (1974, 1977), King & Mamdani (1977) etc.). At present
time dozens of various concrete algorithms based on the original idea however
using more or less different technics are represented in the industrial fuzzy systems.
Leading are here some Japanese schools (cf. Sugeno & Nishida (1985), Hirota &
al. (1987), etc. etc.).
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2. APPROXIMATE REASONING BY FUZZY RULES

What is the essence of approximate reasoning modelled by fuzzy inference?
Let us take the example of driving a car, a task that can be managed by most
grown-up people quite succesfully, although none of us uses any exact algorithm in
his head while sitting at the volant. And yet the fully automatic control of driving
a car in a real traffic environment has still not yet been solved.

Modelling the ’algorithm’ used by the driver, an approach is the description
by a set of rules accumulated during the period of learning and later, during ’sharp’
driving. Examples for such rules are ’Drive slower if the street 1s wet’ or ’Push
the brake firmly if you are near to a red light’. Such instructions are natural
language statements containing linguistic terms like firmly, near, etc. Linguistic
terms can be represented by fuzzy sets over the observation (condition) and the
conclusion space ('If’ and *Then’ part, resp.). The result of combining observation
with premise rules is a set of observation dependent fuzzy rules i.e. fuzzy relations,
which are further combined with each other and so describe a fuzzy set in the
conclusion space. This result can be used then either as a fuzzy conclusion or by
some method (e.g. center of gravity) a crisp conclusion is calculated.

3. TWO BASIC ALGORITHMS

In the following, we give two fundamental algorithms one of which is applied
in the majority of the industrial systems.

The form of every rule in the system is
R, ='IfX1sC;thenY is S}

In the above C; and S; are fuzzy sets over X and Y, respectively, both of
them representing a fuzzy term or a combination of terms. In a general case both
X and Y are constructed as the direct product of k; and k; component spaces,
respectively, i.e.

X=X1XX2)(...)<X)cl andY=Y1XY2X...><Yk,

Terms C; and S; are composed similarly of k; and k; simple terms over X;,..., X,
and Yj,...,Y%,, resp.

1

The rule system is a set of rules like R; and in addition we have an observation
A that is taken over X, and so is, similarly to C;, a linguistic term in the observation
space, i.e. a fuzzy set of X. Our primary purpose is to obtain a fuzzy cunclusion
B over the conclusion space Y. Formally:

(RI,RQ,...,R,-;A) & B

The two algorithms are the following:
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Algorithm 1
Fori=1tor
let m; = max{min{C;(z), A(z)}}
let 52 (y) = min{m, S;(y)}
v

Let B(y) =0
Fort=1tor
let B(y) = max{B(y), S#(y)}
For1 =1 to kg
E yt'B(z) y)
Y -,

- E Yi
Y;

B is the fuzzy set obtained as the union of all truncated conclusions of the rules.
The crisp conclusion is b the center of gravity of the area below B(y).

let b; =

Algorithm 2
For every (z,y)

let R(z,y)=0
Fori=1tor

let R;(z,y) = min{C;(z), Si(y)}

let R(z,y) = max{R(z,y), Ri(z,y)}
For every (z,y)

let B(z,y) = min{A(z), R(z,y)}
For 1 =1 to k;

X ¥ wb(zy)

> i
Y -4

Here, R; are the compact rules which are represented as fuzzy relations in X x Y.
R is the compact rule system including all information in {Ry, Rz, ..., R,}. B(z,y)
is the fuzzy conclusion this time in the form of a fuzzy relation and b is the crisp
conclusion as ’spacial’ center of gravity.

Let b; =

4. THE PROPERTIES OF THE ALGORITHMS

To compare practical usability of the above two methods we have done some
examinations by comparing the behaviour of both algorithms in respect of identical
changes in the premises, the results in Kéczy & Hirota (1991) show that Algorithm
2 is ’better’ than the other.
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We cannot forget, however, computational speed, which influences applicabil
ity very seriously. For measuring the speed we use the uniform complexity model
described e.g. in Aho et al. (1974).

We have r rules in the form

'If X is C; then Y is S;’, so that

X=X1 x...xXhandY=Y1 X...X Yk“

#X; = m; < m, #Y;=n; <njso

#X =TIm; < mk1| #Y =TIn; < nks.

We calculate now the input complexity. There are r rules, each consisting
of an 'If-’ and a ’Then-part’. A fuzzy membership function in ak; dimensional
finite cardinality (= m;) space is represented by k;m; membership degrees (in the
jth dimension m; degrees). As m; is limited from above by m and n, resp., the
resulting complexity of the whole rule system is

Il = r(klm + kgn)
Similarly, the complexity for a single observation in X is

01 — klm

For the crisp conclusion first we obtain the minimum of the observation with
the condition parts of the rules. For a single rule m; steps are needed in the jth
dimension. Then the maximum of all degrees over X takes an identical number of
steps. This results into 2k;m in total. *Truncation’ in Y means n; operations and
unioning the result conditions the same (for every Y;). In addition we have the
steps necessary to calculate the center of gravity. Here, the elements in Y; must be
multiplied by the corresponding membership degree (of the conclusion part) and
added (for the weighted sum), further on, the elements of Y; must be added for the
divider. The last step is the division, resulting the jth component of the center of
gravity. If now m; is estimated by m and n; by n, the resulting complexity is

C1 = r(2kym + 2kzn) + k2.3n + k2

It is known from the literature that the execution of algorithms like 2 is
exponential, so we give only the exact result. (For comparison, I; = I5.)
Ca= (r+ 1)m* n* 4 ky(2m* 1 n* =1 4 n 4 k)n + k3)

C1 and C3 can be compared easier if we introduce k = max{k;, kz} and N =
max{m,n}. So
I, = I, = 2rkN = O(rkN)

Ci1 = 2rkN +3kN + k= O(rkN)
Ca=(r+1)N* + k(2N**"1 4+ N + k) = O(rN?¥)
The result clearly shows that Algorithm 2 is very slow.
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5. A FAST ALGORITHM WITH COMPACT RULES

Exponentiality can be eliminated in Algorithm 2 (compact rule method) if the
following restrictions . re accepted:

#sup(projz, (u(s))) < LILN(L = o(# min{X;, Y;})

where ¢ = z or y,u = C, S or A, projz, stands for the projection of a membership
function to Z = X; or Yj, i.e. p(z;) or p(y,), and supp is the support. Also k;
and k2 must be kept constant, i.e. the number of linguistic variables in the rules
is limited as well. So we have

Algorithm 38
Let R(nil) =0
For j = 1to k; let d; = u; = nil
For 7 = 1 to kg let D; = U; = nil
Fori=1tor
For y =1to k;
Mark m; ; = min{supp(projx,(Ci))}
Mark M; ; = max{supp(projx,(C;))}
For y = k; + 1to ky + k2
Mark m; ; = min{supp(projx;(S;))}
Mark M; ; = max{supp(projx,(Si))}
For (z,y) € [m;, M;]
Let R(z,y) = R(z,y) v min{Ci(z), Si(y)}
Comment* [m;, M;] stands for
(M1, Mia] X oo X [k, Mk, ] X [mi e, 41, Mik, +1] X ...

’
cee X ["“',kxﬁ'hnM"vkr*h]
so there are kjk; limited cycles nested into each other

/ min{Ci(z), Si(y)} = Ri(z, y)*
For j=1to k;
if dj= mil then let d; = m; ; else if m; ; < d; < M; ;
then let d; = m; ; else if d; < my; < u; then
nop else if D; < m; ; then let d; = (d; — m; ;)
if u;= nil then let u; = M; ; else if M;; > u; > m; 5
then let u; = M, ; else if u; > M; ; > d; then
nop else if d; > M; ; then let u; = (u; — M; ;)
Comient* < and > are understood as referring to any element in
the chains d; and u;,
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respectively *
For j =k; + 1to ky + k2
if D;= nil then let D; = m, ; else if m; ; < D; < M; ;
then let D; = m; ; else if D; < m; ; < U; then
nop else if D; < m; ; then let D; = (D; — m, ;)
if U;= nil then let U; = M; ; else if M; ; > U; > my ;
then let U; = M, ; else if U; > M; ; > D; then
nop else if D; > M; ; then let U; = (U; — M, ;)
Comment#* < and > are understood as referring to any element in
the chains D; and Uy,
respectively *
For (z,y) €
[min{supp(projx, (4))},max{supp(prosx, (A)}] =[D;, U]
let B(z,y) = R(z,y) A A(z)
Fori= 1to k,

> 2 %B(zy)
X Y-Y;
;y.-

The complicatedness of this algorithm is determined first of all by the necessity
of administering the total support area in such a way that never the exponential
size of the whole space is ’detected’ in any step (including the start with an ’empty’
space - in fact empty only in our records). A serious disadvantage of Algorithm 3
is that although it allows fast and ’good’ reasoning, the boundedness of the fuzzy
terms results in a universe of discourse thinly covered by rules. How to overcome
this difficulty is the topic of some further investigations in the direction of rule
interpolation which has been done in Kéczy and Hirota (1991).

let b,’ =

In the above the computational complexity connected with a single rule is
kept constant if the number of fuzzy variables is constant.Let us calculate now the
complexity in this latter case.

Every rule is stored only over its support. As the support is limited in every
dimension by the small constant L, size of the membership functions representing
the rules is limited by L*¥*1*3_ For r rules this sizes is rL¥* t*3_ The observation is
limited by L in every component of X, however it is not limited in Y. In case of r
rules in the system the maximal extent of the union (max,t-conorm) of the rules is
rL in every Y;(it is less if there is overlapping between the rules). So intersection
(min) of rule system and observation takes L*!(rL)*? individual steps (min or t-
norm operations). Calculating the center of gravity in all of the k2 components of
Y happens by adding all membership degrees of B in all the dimensions but the
one in question (k; + k2 — 1 dimensions), k; of which are limited in size by L and
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the rest by rL. These degrees however must be multiplied by the corresponding
value in the chosen component of Y which products will be added. Similarly, the
values in Y are added for obtaining the divider. Finally the division is executed
and so one component of b is obtained. The resulting complexity is so

Cs=rLF**s  LR(rL)*r 4 ky(L* (rL)* 7! + 2 + 1)

It is crucially important now that L and k; are constants (and L is a small
constant in respect of N). So L*¥* and L*? are constants, as well and the only
nonlinear members in the above complexity expression are formed by the (rL)**P
members. Maximum exponent is k3, so C3 is reduced to

Ca = 0(r*?)
i.e. it is polynomial. This astonishing fact is the main statement of this paper.

It must be mentioned that there are some other ways to reduce the complexity
of the basic algorithm represented by Algorithm 2 (compact rule method). In
some of them the number of possible linguistic terms i.e. the possible shapes of
membership functions over X; and Y; are limited. In such a case the calculations
can be restricted to a binary search in an exponential size rule combination tree,
where the height is however linear and so the time complexity of the algorithm is
linear (or at least polynomial). Such research is done by Turksen (1990) and group.

It must be seen clearly that all the solutions where the original exponential
complexity is reduced restrict in some way the generality of the algorithm. In case of
Algorithm 1 an essential part of the information is lost (that is why the sensitivity is
not so good) in case of Algorithm 3 it is the arbitrarity of the membership functions
that is given up, although still infinite variations are allowed. In Turksen’s method
the number of membership function shapes is reduced to a finite number complexity
is however even better.
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