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Abstract: Fuzzy random variables deal with two important concepts of
uncertainty, randomness and fuzziness. In this survey, fuzgy random variables
are considered as generalizations of random sets. As an example of a nontrivial,
but intuitively appealing result, the strong law of large numbers is presented.
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1. INTRODUCTION

Fuzzy random variables have been the object of study since 1978, when
Nahmias [20], Stein and Talati [28] and, using a different approach, Kwakernaak
[16] made first attempts to introduce this concept which incorporates two important
concepts dealing with uncertainty: randomness, on one hand, and fuzziness, on the
other hand. The randomness is usually statistical in nature, whereas fuzsiness
comes from the vagueness and/or subjectivity of the objects which are being
observed. Based on Kwakernaak’s definition, a strong law of large numbers (Kruse
{14], Kruse und Meyer [15], Miyakoshi and Shimbo [19]) and a central limit theorem
(Boswell and Taylor {10]) have been established.

Finally, Puri and Ralescu |26} extended (and slightly modified) Kwakernaak’s
definition, considering a fuzzy random variable as a generalization of a random
set (Matheron [18]). To be more specific, a fuzzy random variable is a random
variable whose range is a fairly large class of fuzzy subsets of IRP, the p-dimensional
Euclidean space (which can be replaced by a Banach space).

An example for such a situation could be the recognition of a handwritten
character. Since their exact shape and boundaries are not always clear, such
handwritten characters are quite often modelled using fuzsy subsets of IRZ. One
could take a random sample of such characters and define the prototype of this
character using the expected value of the sample.

In order to do this properly, an expected value and a strong law of large
numbers are needed. They were given in Puri and Ralescu [26], Klement, Puri
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and Ralescu [13], the latter paper also containing a central limit theorem. More
recently, Bin [4-9] derived a series of results which further explore fuzzy random
variables, proving ergodic and martingale convergence theorems, among others.

In this survey we shall first present the necessary preliminaries about random
sets and then proceed to the concept of fuzzy random variables in the sense of Puri
and Ralescu [26], paying particular attention to their integration (generalizing the
integral of set-valued functions due to Aumann [3]). Finally we present the strong
law of large numbers together with a sketch of its proof. We restrict ourselves to
the description of this limit theorem because of its apparent relation to estimation;
more results can be found in the literature.

2. PRELIMINARIES ON RANDOM SETS

Let K(IR?) denote the collection of non-empty compact subsets of the
Euclidean space IRP, and let K.(IRP) denote the subclass consisting of all convex
sets in K (IRP). As usual, Minkowsks addition and scalar multiplication induce a
linear structure on K (IR?), although no vector space structure (the inverse element
with respect to the Minkowski addition does not exist):

A+B={a+b|lac Abe B}
AA = {)a|a € A}

for all A, B € K([RP),) € IR.
A metric structure on K (IRP) is induced by the Hausdorff distance defined
by
d(A, B) = max(sup inf |[a — b]|,sup inf |[ja — b
(4,8) = max(sup inflla — bl sup inf o~ )

or, equivalently,
d(A, B) = inf {¢ > 0|A + ¢B” C B and B + ¢B? C A}

Here, A,B € K(IR?),| || is the Euclidean norm on IRP and BP = {z €
IR? |||z| < 1} is the unit ball in IRP. The metric space (K(IRP),d) is complete
(Debreu [12]). As usual, a norm ||| on K(IR?) is defined by ||A| = d(4,{0}).

If (0, 4, P) is propability space, then a random set is a measurable function
f: @ — K(IR?). The ezpected value Ef of a random set f was defined following
Aumann [3] by

Ef ={Fp|pe L'(Q, 4, P),p(w) € f(w) a.e. },

where ¢ : (0 — IRP is a selectton of f, Ep the expectation of the random vector
@ and L'(f], 4, P) the collection of all integrable random vectors ¢ : 1 — IRP. In
general, the existence of measurable or integrable selections is a difficult problem.
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In our simple setting, however, it is always guaranteed, which implies that the set
Ef is always nonempty. Moreover, if the random set f is K;(IR?)-valued and if
E| f|| < oo, then we have Ef € K.(IR"), too.

The calculus of set-valued functions, including limit theorems, has been
developed by Aumann [3] and Debreu [12]; see also Matheron [18] for more results
about random sets.

3. FUZZY RANDOM VARIABLES

Fuzzy subsets of IRP are functions u : IR® — [0,1], u(z) describing the
degree of membership of the vector z € IRP in the fuzzy set u. The a-level set of
u (which is a crisp subset of IRP) is given by (a,€ |0,1})

Lou = {z € IR? | u(z) > a}.

By supp u we denote the support of u, i.e. the closure of the set {z € IRP |u(z) >
0}.

We shall work with the collection F(IRP) of those fuzzy subsets u of IRP

which satisfy
(i) u is upper semicontinuous,

(it) supp u is compact,

(iii) Liu# .

Note that whenever u € F(IRP), then suppu and each a-level set of u are
elements of K(IRP), and, conversely, whenever A € K(IRP) then its characteristic
function 14 belongs to 7(IRP). Hence, F(IRP) is a natural extension of K(IRP).

The linear structure on ¥ (IRP) is given as follows (u,v € F(IRP), ) € IR):

(u + v)(z) = sup {min(u(y), v(z)) |y,z € IR?,y + z = z},

u %1: ifA#0
e = {307 E170

It is not hard to see that these are indeed operations on F7(IRP), i.e. if u,v €
F(IRP),X € IR then we always have u+ v, Au € F(IRP). Again, these operations
are natural extensions of the corresponding ones on K(IRP) since, looking at the
a-level sets, for each a € [0,1]
Lo(u+v) = Lau+ Lav, L,(Au) = ALqu.
If we wish to extend the Hausdorff distance to F(IRP) it turns out that
there is no unique extension of it. We shall work with the following two metrics on

F(IRP):
dl(u,v)=/ d(Lau, Lav)da,
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doo(u,v) = sup {d(Lqu, Lov)|ja > 0}.

The first one was introduced in Klement, Puri and Ralescu [13], the latter one
in Puri and Ralescu [24]. Both are natural generalizations of the Hausdorff metric
in the sense whenever A, B € K(IR?) then we have

d(A, B) = dl(l,q, lB) = doo(lA, lB).

(¥(IR?),d;) is a separable metric space, whereas (F(IRP),d,) is not separable
(Klement, Puri and Ralescu [13]).

Since convexity is quite often a very helpful property, we also consider the class
7.(IR?) of all those fuzzy subsets u in 7(IRP) which are fuzzy convez (Zadeh [29]),
1.e. such that for all z,y € IRP, A € IR

u(Az + (1~ A)y) > min(u(z), u(y)),

or, equivalently, for a > 0 we have L,u € % (IRP). Obviously, A € K(IRP) is
convex if and only if 1, € F(IRP) is fuzzy convex.

The convez hull cou of a fuzzy subset u of IRP is defined by (Lowen [17])

cou = inf{v € 7(RP)|v > u}.

Again this is the proper extension of the convex hull in IR? since for u € F(IRP)
and a>0
. L,(cou) = co(Lyu).
The space 7.(IRP) is extremely important since it can be embedded isomet-
rically into a Banach space. To formulate it precisely, there exist a Banach space
X and an embedding function j : #.(IR?) — X such that for all u,v € 7,(IRP)

we have
(i) 15(u) = 3(v} | = di(u, v),

(i) j(u+v) = jiu) +5(v),

(i) 7(Au) = Aj(u) whenever X > 0.
This result is due to Puri and Ralescu [24] who used a very general embedding
theorem (R&dstrom [27]).

Given a probability space (03, 4, P), a fuzzy random variable is a Borel
measurable function

X : Q0 — (F(IRP), doo)

(Puri and Ralescu [26]). Note that we use here the metric d, rather than
dy. The reason for this choice ist that, if X is a fuzzy random variable then
supp X : @ — K(IRP) is always a random set, which is not necessarily true if we
use d; instead of d,.
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If X is a fuzzy random variable such that E||supp X| < co then its ezpected
value EX is the (unique) fuzzy set satisfying for each a >0

Lo(EX) = E(L.X).

It has been shown that EX is always an element of K(IR?) (Puri and Ralescu
[26]). Again this expected value has many properties of the Lebesgue integral,
including limit theorems (Puri and Ralescu [26], Klement, Puri and Ralescu[13]).

4. STRONG LAW OF LARGE NUMBERS

A strong law of large numbers for random sets was proved by Artstein and
Vitale [2]; this was extended to random convex sets in a Banach space by Puri and
Ralescu {23, 25]. We shall formulate a generalisation of the Artstein and Vitale
result to fugzy random variables. Since (F(IR?),d,) is a metric space, we can
talk about independent and identically distributed fuzey random variables in the
usual way.

Theorem . (Strong law of large numbers, Klement, Puri and Ralescu [13]). Let
(Xn)nemw be a sequence of independent and identically distributed fuzzy random
variables such that E|supp X,|| < co. Then

1
(_(Xl +Xo+ -+ Xn)) — E(co X3) a.c.,
n neEN

the convergence being in the metric d;. O

The fact that F(IR?) is a straightforward extension of K(IRP) seems to
suggest the following idea for the proof: switch from the fuszy random variables
(Xn)nemw to the a-level sets (LyXp)nenw which of course are random sets, apply
the Artstein and Vitale strong law of large numbers to this sequence and move
back to F(IRF). This elegant way, however, does not work.

We are therefore forced to prove the strong law of large numbers first for
convex fuzzy random variables. In order to do this, we embed 7.(IRP) into a
Banach space X via an isometry j : #(IRP) — X. Then (jo Xp)pen is a
sequence of independent and identically distributed random variables with values in
the Banach space 1. The strong law of large numbers for Banach-valued random
variables yields now

1 . .
(—(J'°X1+_7'0X2+'--+J°Xn)> — E(jo X1) ae.
n nEN

It is a rather technical proof to show that E(jo0 X,) = j(EX,). Having done this,
our result follows immediately for convex fuzzy random variables.
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The convexity assumption can now be removed using the Shapley-Folkman
lemma (see Arrow and Hahn [1}).

Finally, let us mention that it is not possible to prove convergence in the metric
do in our strong law of large numbers. The reason here is the lack of separability

in the space (F(IRP),dw).
5. CONCLUDING REMARKS

It should be noted that the study of random sets is a rather young and ex-
panding part of probability theory. It is therefore not surprising that fuzzy random
variables, as a combination of randomness and fuzziness, are also developing very
fast. The literature is growing, and rather deep results in probability, such as the
central limit theorem, ergodic theorems and martingale convergence theorems are
established in this general case (Klement, Puri and Ralescu [13], B4n [5,8]).
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