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t-NORM-BASED OPERATIONS
ON FUZZY SETS*

Tibor Keresstfalvi**
Computer Centre, Lordind Eotvos University
P. O. Box 157, Budapest 112, H-1502, Hungary

Abstract: The goal of this presentation is to review certain results concerning
the t-norm-based operations of fuzzy sets. We present a generalization of
Nguyen’s results regarding the level sets of two—place functions defined via sup-
t-norm convolution, and also give an exact calculation formula for extended
addition of fuzzy intervals of LR-type.
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1. INTRODUCTION

Solving practical problems one has to decide which of the t-norms to calculate
with. To different problems may fit different t-norms. In the majority of cases they
use the min”-norm (T(z,y) = min{z, y}) introduced by L. Zadeh which is quite
natural and the most simple to handle. But the ”min”-norm is the greatest one in
the sense that T(z,y) < min{z,y} for all the t-norms T. This property of "min”-
norm may cause too fast growing of uncertainty in calculations. A very important
feature of the approach by t-norms is that it provides means of controlling the
growth of uncertainty and prevents variables from simultaneous shift off their most
significant values. In this respect, the various formulas of t-norm-based operations
yield practical tools for achieving this control and are very meaningful.

Let X #8,Y # 0 and Z # @ be three universes and the mapping *: X xY —
Z an operation between X and Y taking its value in Z. The arithmetical operations
are IR x IR — IR mappings, where IR denotes the real line. Denote by 7(X), 7(Y)
and 7(Z) the set of all fuzzy subsets of X, Y and Z, respectively and let A € 7(X),
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B € 7(Y). We can fuzzify the operation * defining via Zadeh’s extension principle
an 7(X) x ¥(Y) — 7(Z) operation as follows

BasB(2) = S, T (pa(z), n8(y)) (1.1)

where A* B € ¥(Z); pa, BB, ba+p are the membership functions of fuzzy sets A,
B and A * B, respectively and T : [0,1] x [0,1] — [0, 1] is an arbitrary t-norm.

With respect to the possibility theory, membership functions x4 and up are
considered as possibility distributions of some variables u and v taking their values
in X and Y, where us(z) and pp(y) correspond to the grades of possibility
of choosing z and y as suitable values for u and v respectively. In this sense,
using in (1.1) T = min we get an operation on two noninteractive possibility
distributions. However, using a t-norm in general we get an operation on two
weakly noninteractive possibility ditsributions [1].

2. USING LEVEL SETS OF FUZZY SETS

A natural way of practical computations on fuzzy sets is to use a—cuts (or
a-level sets). Recall that the a—cut of the fuzzy set A € 7(X) is

[A]*={z€ X | pa(z) 2a} a€01]

Let X and Y be topological spaces and denote by 7(X,K), 7(Y,K) the
set of fuzzy subsets of X and Y, respectively, having compact support (we mean

the closed support of a fuzzy set: Supp(A) := {z € X | pa(z) > 0}) and upper
semicontinuous (u.s.c. for short) membership function.

Nguyen [5] investigated the operations on noninteractive fuzzy sets from the
point of view of a—cuts. He gave a necessary and sufficient condition for obtaining
the equality

[A+B]* =[4]*+[B]* a€lo,1]
where [A]* * [B]* = {z=z*y | (z,y) € [A]* x [B]*}.
Generalizing this result to the case of weakly noninteractive fuzzy numbers [3] a

necessary and sufficient condition can also be given for obtaining the corresponding
equality:

[4+B]"= |J [4]¢+[B]" «a€lo,1] (2.1)
T(én)2a

Theorem 2.1.. A necessery and sufficient condition for obtaining the equality (2.1)
is that sup,,,_, T(A(z), B(y)) is attained for all z € Z. O



t-Norm Based Operations 129

Proof. (i) Necessity. Let z € Z and

(A =+ B)(z) = Sup T(A(z), B(y)) =t

Then,
zelasBl= |J [A)f+(BF
T(&mn)2t
by hypothesis. Therefore, there exist &, no such that T'(§o,1m0) > t and z €
[A]¢e # [B]"° i. e. there exists (zo, yo) € [A]¢° x [B]" such that zo * yo = z. But

t= ;:gz T(A(z), B(y)) > T(A(z0), B(wo)) = T(é0,m0) > ¢t

and thus T(A(zo), B(yo)) = ¢.
(i1) Sufficiency. Let

ze |J [A¢+(B]

T(én)2a

that is, there exist £, no such that T(&o,n0) > a and z € [A]¢° » [B]"™. However,
if (2o, y0) € [A]¢° x [B]"°, then

(A *B)(z) = Jup, T(A(z), B(y)) > T(A(zo), B(v)) = T(&0,m0) 2 @

and thus z € [A = B]*.
On the other hand, let z € |A * B]?, i.e.

Sup, T(A(z), B(y)) 2

By hypothesis, there exists (zo,yo) € X X Y such that zo * yo = z and

T(A(zo), B(wo)) = Sup, T(A(z), B(y)) 2 a

thus by taking £o := A(zo) and no := B(yo), we have T(&o,n0) > @, i.e. (Zo, yo) €
[A]é° x [B]" and z € [A]¢° * [B]", implying that z € UT(e,n)zalAlé * [B]". |
Now, we show that equality (2.1) holds for all continuous operations and u.s.c.

t-norms in the class of fuzzy sets having compact support end u.s.c. membership
function.

Theorem 2.2. If* : X XY — Z 1s continuous and the t-norm T 1s upper
semicontinuous, then (2.1) holds for all A € 7(X,K) and B € 7(Y,K). O
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Proof. By virtue of previous theorem it is sufficient to show, that
Sup,.y=; T(A(z), B(y)) is attained for all z € Z.
Denote by ¢ the mapping (z,y) — T(A(z), B(y)). Obviously,

sup T(A(z), B(y)) = sup e(z,y)

Tey=s (2,5)€S%pp(A) X Supp(B)

since T(A(z), B(y)) = 0 outside of the set Supp(A) x Supp(B).

However, Supp(A) x Supp(B) is compact and {(z,y) | z+y = 2} is closed by
continuity of *; hence {(z,y) | z* y = z} N Supp(A) x Supp(B) is compact too.

T is non-decreasing, u.s.c., A and B are also u.s.c., hence p is u.s.c. as well.
Thus ¢ assumes its maximum on the compact set

{(z,y) | z*y = 2z} N Supp(A) x Supp(B)

for all z € Z. [ ]

8. USING FUZZY INTERVALS OF LR-TYPE

An another way of treating with fuzzy sets in practical computations is to use
fuzzy numbers or fuzzy intervals of special type such as LR fuzzy intervals. The
addition rule of LR-fuzzy intervals is well-known in the case of min”-norm [1]. We
give in this section exact calculation formulas for t-norm-based addition of special
LR-fuzzy intervals. Recall that an LR fuzzy interval A = (a~,a%,,f)Lr has a
membership function

1 ifz€[a",at]

Alz) = L ( a“+) fz€a™ —a,a”] (3.1)
R(’_ﬁa ) if z €[a*,at + 8]
0 otherwise

where [a™,a%] is the peak of A; a~ and a* are the lower and upper modal values;
L and R : [0,1] — [0,1] are the shape functions with L(0) = R(0) = 1 and
L(1) = R(1) = 0 which are non-increasing, continuous mappings.

A t-norm T is said to be Archimedean iff T is continuous and T'(z,z) <
z, Vz €|0,1[. Every Archimedean t-norm T is representable by a continuous and
decreasing function g : [0,1] — [0, co[ with g(1) = 0 and

T(z,y) = ¢'"(9(2) + 9(y))
where gl=1l.is the pseudo-inverse of g, defined by

. ) if 0,g(0
gl '(y)={g () nii{g(g)(,il
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Function g is called the additive generator of T'.

In the following theorem we determine a class of t-norms in which the addition
of fuzzy intervals is very simple [4]:

Theorem 3.1. Let T be an Archimedean t-norm with additive generator g and let
A; = (af,a},a,B)Lr t = 1,...,n be fuzzy intervals of LR—type. If L and R
are twice differentiable, concave functions, and if g 1s twice differentiable, strictly
convez function then the membership function of the T-sum S = A; +...+ A,, 1s

1 ifze[S™,St|
S(s) = -1l (,, g (L (S_;;_'))) fz€[S™ —na,S"] (52)
-1l (n g (R (z;;*))) ifz € [S*,S +nf)
0 otherwise
where S =a]7 +...+a; and ST =af +... +a}. m]
Proof. It is clear that
S(z) = n+f‘u+pz‘=‘ T(A1(z1),--., An(zn)) =
= sup  g"U(g(Ai(z1)) +... + g(4n(zn))) = (3.3)

z1+...+z=2

=g=U(  inf  (g(A1(z1)) + ...+ 9g(An(zn)))

Z)+...+xTa=2

It is also easy to see that the support of S is included in the interval [S~ —
na, St + np]. From the decomposition rule of fuzzy intervals (2] it follows that
the peak of S is [S~,S*]. Moreover, if we consider the right hand side of S (i.e.
St < z < S* + nf) then only the right hand sides of the terms A; come into
account in (3.3) (i.e. a}f < z; <a} +f,4=1,...,n). The same holds for the left
hand side of S, this is why we deal in the following just with the right hand side
of S.
So, let ST <z < S* + npB. The constraints

1 +...+z, =2 af <z; <al +8 1=1,...,n

determine a compact and convex domain K C IR™ which can be considered as the
section of the brick

8= {(zl,...,zn)

af <z;<alf +8 i=1,...,n}
by the hyperplane

P:={(zl,...,zn)

::1+...+:|:,.=z}
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In order to calculate S(z) we need to find the conditional minimum value of the
function ¢ : 8 — IR

o(z1,..-,zn) = g(A1(z1)) + ... + 9(An(zn))

subject to condition (zy,...,2,) € K. We could change the infimum with minimum
because K is compact and ¢ is continuous.

Following the Lagrange’s multiplayers method it can be shown [4] that ¢
attains its conditional minimum at the point

z— St

1=1,...,n

where

Al(zl) =00 = A,,(z,.)

This is the only stationary point of ¢ (i.e. where its partial derivatives vanish). This
point is guaranteed to be a minimum by monotonocity and concavity of the shape
function R and by monotonicity and strict convexity of the generator function g.

Substituting the values (%, ...,%,) for (z1,...,2z,) in (3.3) we immediatly get the
desired result (3.2). [ |
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