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Abstract: There are close similarities between fuzzy arithmetic and approx-
imate reasoning. The main reason for this is that both fuzzy numbers and basic
linguistic notions are represented by convez fuzzy sets. Another reason is that
the sup-min composition rule is used in fuzzy number theory as the addition,
and in approximate reasoning as the compositional rule of inference. The final
reason is that comparing two linguistic notions is hardly the same as comparing
fuzzy numbers. This comparison can be used to study the generalized modus
ponens.
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1. INTRODUCTION

In this paper we study some similarities between fuzzy arithmetic and approx-
imate reasoning. Fuzzy number theory or fuzzy arithmetic deals with expressions
like “about six,” “more than 10 4 11,” “between approximately eighty and ninety.”
Each of these expressions is translated into a fuzzy set. Furthermore, it defines
mathematical operators like addition, subtraction, multiplication, etc., in terms of
fuzzy set operations. Fuzzy number theory is studied by several authors, among
whom we mention Jain [11, 12], Dubois & Prade (3, 5], Dijkman et al. [1] and Di
Nola el al. [15).

Approximate reasoning, introduced by Zadeh in [16], is “in its broad sense
simply a collection of techniques for dealing with inference under uncertainty in
which the underlying logic is approximate or probabilistic rather than exact or
deterministic. In its narrower sense (...) approximate reasoning is a brand of fuzzy
logic.” [17]. Driankov [2] states that approximate reasoning is a mode of fuzzy logic
where the premises contain fuzzy predicates but no fuzzy quantifiers and no fuzsy
probabilities. In this sense we will use approximate reasoning too. Approximate
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reasoning has been studied by so many authors, that it is impossible to sum them
up. References to literature about approximate reasoning can be found in [10].

In this paper we discuss several similarities between fuzzy number theory and
approximate reasoning and show how they can be used to solve some difficult
problems in approximate reasoning, in particular concerning the generalized modus
ponens.

2. FUZZY NUMBERS

A fuzzy number is defined as a fuzzy set on the domain IR. For example, the
fuzzy number “about six” is a fuzzy set with a bell-shaped membership function,
centered around six. The fuzzy interval “more than 10 & 11" is a fuzzy set
with an increasing membership function, where the slope lies somewhere in the
neighbourhood of 11. If # is a fuzzy number, then  is the fuzzsy set [ um(z)/z.
Following Dijkman et al. [1], the membership function u,; should at least satisfy

® u; is normal, t.e. Iz.ps(z) =1,

® U is bell-shaped, i.e. lim|z|_o t(z) = 0.
They give several additional criteria, from which we only choose

® U, is continuous,

® g is not descending on (—oo,a) and not ascending on (a, 00).
This means that m is a bell-shaped, normal, continuous, convex fuzzy set.

There are two kinds of fuzzy intervals, namely non-decreasing and non-
increasing intervals. A non-decreasing interval i is defined as u;(z) = sup, <, um(y)
where 7 is a fuzzy number. A non-increasing interval j is defined as pj(z) =
SUPy >, Hiin (y). In the following, a fuzzy number means either a fuzzy number or a
fuzzy interval.

Let m and fi be two fuzzy numbers, and - be a binary operator like +, —, X,
/, etc., then a circle around the argument means its extension, s.e. the operator

that can be applied on two fuzzy sets, t.c. fuzzy numbers. In general, m©® fi is
defined as

prmoa(z) = sup min (ps(z), pa(y)) (1)

z=z'y

hence, the membership function of m @ fi is sup min (ps (z), wa(y)). Dubois &
z=z+y
Prade [4] have proved that when i and #i are fuzzy numbers, i.c. they satisfy the

criteria mentioned above, then m ®t is dependent only of the increasing parts of m
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and fi. The same applies to the decreasing parts. Suppose the class of continuous
functions Cr consists of functions of the form

0 if 2<a,224d,
. __ ) non —decreasing sf a <z <b
II(z;a,b,¢,d) = 1 fb<z< c: (2)

non — increassing sf ¢ < z < d;

then

m= / I'I,‘(z; m, mz,ma,ﬂu)/Z,
R

and

"l=/ II¢(z; n1, na, n3, ny)/z
R

are fuzzy numbers (Ilg,IT, € Cri, m; and n; are parameters).

Suppose m @ #i = §, and § = [, I (2; 1, 52, 33, 34), where s; = m; + n;, then
[5] shows that when k = £ (IT, = II,), then h = k = ¢, and when k # ¢, then
I, can be calculated. In [8] it was shown that II; lies (normalised) somewhere in
between Il and II,.

3. APPROXIMATE REASONING

As fuzzy arithmetic deals with fuzzy numbers, so approximate reasoning deals
with linguistic notions. The fact that linguistic notions can be represented by fuzzy
sets, was one of the main objectives to develop fuzzy set theory. A well-known
example is ‘old’: people younger than e.g. sixty are not old, people older than
eighty are really old, and between sixty and eighty there is a transition region. ‘Old’
is an example of a linguistic notion that can be represented by a fuzzy set with a
non-decreasing membership function. In the same way ‘young’ has a non-increasing
membership function, and ‘adolescent’ has a bell-shaped membership function. We
state that any basic linguistic notion can be represented by either an increasing, a
decreasing or a bell-shaped membership function, hence, the membership function
is convex. If the membership function is not convex, then the linguistic notion
consists of several components, connected by words like ‘and’, ‘or’, ‘not’ or ‘if ...
then’, etc.

We will deal with so called atomic sentences “S is P”, where S is a subject
and P is a property, described by a fuzzy set. It is possible to combine atomic
sentences with logical operators like ‘and’, ‘or’, ete.

Approximate reasoning is the theory that combines linguistic notions with the
logical connectives mentioned above. It uses T-norms to represent the ‘and’, T-
conorms or S-norms to represent the ‘or’, multivalued logic operators to represent



116 Hans Hellendoorn

the ‘if ... then’, etc. Furthermore, approximate reasoning deals with inference
rules. Usually there are two, namely the compositional rule of inference and
the generalized modus ponens. The compositional rule of inference has inference
scheme “S; is P, S; is R S; % Sz is Q”, where Q has to be determined, given
P and R. The generalized modus ponens has inference scheme “if S; is P; then
Sz is Py, S 18 Q; % Sz is Q2”, where Q2 has to be determined, given P;, P,
and Q,;. Hence, the difference between the compositional rule of inference and the
generalized modus ponens is that the compositional rule of inference deals with a
relation, where the generalized modus ponens deals with an “if ... then’-rule.

Usually, Q in the compositional rule of inference is determined by the following
formula: pg(y) = sup, min (pup(z), pr(z,y)). In the literature several ways are
known to calculate Q; in the generalized modus ponens. In [9, 10] we have proposed
to compare Q; and P;, and to use this comparison to calculate Q2 from P;. In
Sec. 5, we will return to this theme.

4. SIMILARITIES

It will be clear that there are some similarities between fuzzy arithmetic and
approximate reasoning. The most obvious one is that both fuzzy numbers and
basic linguistic notions are described by convez fuzzy sets. This is important,
because the class of convex fuzzy sets is mathematically rather attractive. This
similarity implies that theorems of fuzzy arithmetic can be used in approximate
reasoning, and vice versa. Note that a similar comparison is conceivable between
fuzzy arithmetic and fuzzy time logic [7].

We have seen in Eq. (1) that the addition of two fuzzy numbers uses a sup-min
operation, which is also true of the compositional rule of inference in approximate
reasoning. If we again consider this last inference rule, we see that it uses a fuzzy set
P and a fuzzy relation R. This fuzzy relation represents notions like ‘larger than’,
‘at least as small as’, ‘more or less equal’, hence each relation R handles a difference
between z and y. We will introduce a fuzzy set R*, satisfying ups (y—z) = pr(z, y)-
Using this fuzzy set, the compositional rule of inference-formula transforms into

#e(y) = sup min (up(2), uee (v — =)) (3)

or  polz) = ,Sup min (up(2), ur-(v)) (4)

which is fuzzy addition.

Another similarity between fuzzy numbers and linguistic notions can be found
in the comparison. It is namely more or less the same to compare two fuzzy
numbers or two notions. Let us consider two convex fuzzy sets F' and G. In one
interpretation, these two are fuzzy numbers m and 7i, in another, they are linguistic
notions P and Q. It must be clear that there is the following ‘isomorphism’:
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m<n P is weaker than Q

m=n P is equal to Q

mes ~ P is approximately the same as Q
m>n P is stronger than Q

mGn P is much stronger than Q

etc. We will use this ‘isomorphism’ in our study of the generalized modus ponens.
5. THE GENERALIZED MODUS PONENS

The generalized modus ponens has inference scheme
if S; is Py then S; is P,
Sl is Ql!
O Sz 18 Q.
It forms one of the most interesting parts of approximate reasoning. In many
papers its working has been discussed. In particular the ‘if ... then’-rule is most
interesting, and also the combination of a fact with this ‘if ... then’-rule. Usually,
the implication is considered to be some multivalued implication, such that when
R is a relation describing the implication, R is for example equal to pug(z,y) =
max(1 — pp,(z), pp, (y)), or min(1,1 = up,(z) + pp,(y)), or up,(v)) if up,(z) 2
kp,(y)) and O otherwise, etc. A whole series of these rules can be found in [14,
10]. It has been observed by e.g. Zadeh that such a relation causes a so called
interference effect. A full proof of this occuring can be found in [9]. This means
that it is not possible to have the following three consequences of the ‘if ... then’-
rule together when it is represented by a fuzzy relation R
1. if Q; is weaker than P;, then Q; is weaker than Ps;
2. if Q, is equal to P;, then Q, is equal to P;;
3. if Q, is stronger than P;, then Q; is stronger than P;.

Therefore, we propose another way to deal with the generalized modus ponens,
namely by comparing P, and @Q;, and using the result of this comparison to
determine Q2 from P;. If P; and Q; are completely different, then Q2 is unknown,
if these two are equal, then Q; equals P, and if these two are approximately
equal (or one is somewhat stronger/weaker than the other), then Q2 should be
somewhere in the neighbourhood of P;.

How should this comparison of P; and Q; be performed? In [10] we proposed
a method that only applied to increasing linguistic notions. From a fuzzy set P it
took the values max{z | pp(z) = 0} and min{z | pp(z) = 1}, and idem from a
fuzzy set Q, and used these values to compare P and Q. This method does not
give very precise values, and does not work for bell-shaped fuzzy sets.

If we take into account the ‘isomorphism’ mentioned above, then we can simply

think that P and Q are fuzzy numbers, and compare them as such. There are
many methods to compare fuzzy numbers (cf. [13]), but most of them are not more
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than center of gravity or mean value methods. These kinds of methods have the
disadvantage that they do not determine the grade of m being greater or smaller
than f. Other methods, using Hamming and other distances are usually not very
well worked out for comparison. That is why we use a method proposed by Dubois
& Prade [6]. Suppose P and Q are bell-shaped and the center of gravity value of
P < center of gravity value of Q, then four values are important, namely

Mp([Q, 00)) = sup min (kp(2), kq.c0) (=) (5)
Mp((Q,00)) = sup min (up(2), B(@,00)(2)) (6)
Np([Q,00)) = inf max (4(-co,p) (2), B(Q,00) (%)) (7

(
Np((Q,0)) = inf max (4(—co,p) (), H(Q.e0) (<)) (8)

where  p(g,c0)(2) = suPy< kQ(y),  K(Qeo)(z) = infy>(1 — pg(y)), and
B(-oo,P)(Z) = supy>, pp(y). The four values mentioned above each tell something
about the position of P w.r.t. Q. They can be used to compare P; and Q;. The
result of this comparison determines the position of Q2 w.r.t. P;. The following
observations may be possible: if Ilp, ([Q1,00)) = 0, or if Np,([Q1,00)) = 0 and
Np, ((Q1,00)) =0, then Q is unknown (P; and Q, are too different that the ‘if ...
then’-rule cannot be used). If the ‘if ... then’-rule concerns a positive association
between the antecedent and the consequent, then for example: if Ilp, ([Qy, o0)) =~
%, and both ITp, ((Q1,00)) and Np,([@Q1,0)) = 1, then P; and Q; lie pretty close
together, hence Q lies (somewhere left) in the neighbourhood of P,. The values of
p, ([Q2,00)), Mp, ((Q2, o)) and Np,(|Q2,0)), will be somewhat lower than the
corresponding P, and Q; values.

6. CONCLUSION

We have seen that there are some similarities between fuzzy arithmetic and
approximate reasoning. These similarities can be used to study the generalized
modus ponens. In this paper we have used a rather simple method to compare
two linguistic notions, but when more elaborate methods to compare two fuzzy
numbers become available, they can immediately be used to study the generalized
modus ponens and other topics in approximate reasoning.
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