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1. INTRODUCTION

The classical theory of preference modelling deals with a binary relation R
defined on a set A of alternatives as a (weak) preference relation (for more details
see [8]):

_aRb if and only if ”a is not worse than b”.
One can define three binary relations associated with R in the following way:
- strict preference relation P: aPb iff aRb and not bRa,

- indifference relation I: alb iff aRb and bRa,
- incomparability relation J: aJb iff not aRb and not bRa.
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Actually, P is asymmetric, I and J are symmetric relations. Moreover, the
following basic connections among P, I, J and R can be considered:

PUI=R, (1.1)
PNnI=4, (1.2)
PnJ=4, (1.3)
InJ=4. (1.4)

In addition, relations P, P~1, I and J form a partition of the direct product A x A
(P! denotes the inverse of P).

In this paper we summarize some extensions of these results using fuzzy models
for weak preference, strict preference, indifference and incomparability relations.
Our approach is based on results obtained by Ovchinnikov and Roubens (7], Fodor
[2] and by Fodor and Roubens [5]. The main problem is to define P, I and J in
terms of R and introduce models for fuzzy set-theoretic operations that preserve
the above properties.

2. SOME TECHNICAL TOOLS

A continuous strictly increasing function ¢ : [0, 1] — [0, 1] satisfying boundary
conditions ¢(0) = 0, #(1) = 1 is called an automorphism of the unit interval.

A function n : [0,1] — [0,1] is a strict negation if it is continuous, strictly
decreasing and n(0) = 1, n(1) = 0. Any strict negation can be represented by two
automorphisms ¢, ¢ of the unit interval as follows (see [3]):

n(z) = ¥(1 - ¢(z))-

A strict negation is strong if n(n(z)) = z for every z € [0, 1]. Any strong negation
N can be represented by an automorphism of the unit interval in the following way
(see [9]):

N(z) = ¢71(1 - ¢(z)).

A t-norm is a function T : [0,1] x [0,1] — [0, 1] such that T is commutative,
associative, nondecreasing with respect to both arguments and T(1, z) = z for every
z € [0,1]. T is said to be continuous if it is a continuous function on (0, 1) x (0, 1).
We say that T has zero divisors if there exist z,y > O such that T(z,y) =0. A t-
norm T is Archimedean if T(z, z) < z for every z € (0,1). It is easy to prove that a
continouos t-norm with zero divisors is Archimedean (see [7]). A standard example
of a continuous t-norm with zero divisors is given by the Lukastewicz t-norm:

W(z,y) = max{z +y — 1,0}.
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Any continuous t-norm having zero divisors can be represented as a ¢-transform
of W (see [6]):

T(z,y) = ¢~ (W(4(2), 4(v))) = ¢~ " (max{4(z) + ¢(y) - 1,0}).

A function S : [0,1] x [0,1] — [0,1] is called a t-conorm if S is commutative,
associative, nondecreasing and S(0,z) = z for all z € [0, 1].
In what follows only continuous t-norms and t-conorms are considered.

In fuzzy set theory t-norms, t-conorms and negations are used as models for
intersection, union and complement operation, respectively (see e.g. [10]). If

5(z,y) = n"'(T(n(z), n(y)))

is satisfied then a triple (T, S, n) is called a De Morgan triple. If (T, S, N) is a De
Morgan triple such that T and N is generated by the same automorphism ¢ then
(T, S, N) is called a strong (or Lukastewicz-like) De Morgan triple. In this case

T(z) y) = ¢_1(ma‘x{¢(z) + ¢(y) - 1!0})v (2'1)
S(z,y) = ¢~ (min{¢(z) + 4(y), 1}), (2.2)
N(z) = ¢7'(1 - ¢(2)). (2.3)

Finally, for any t-norm T one can define a fuzzy smplication T by residuation
(for more details see [3,4]):

T~ (z,y) = sup{2; T(z,2) < y}.

It is welkknown that if T' is a continuous t-norm with zero divisors then T (z,0)
is a strong negation. Moreover, if T is a ¢-transform of W then

T (I! y) = ¢—1(min{1 - ¢(:l:) + ¢(y)7 1})

8. BASIC CONCEPTS

From now we assume that R is a fuzzy preference relation, i.e., a function
R: Ax A — [0,1] such that for any a,b € A, R(a,b) is a degree to which ”a is not
worse than b”.

To define fuzzy binary relations P, I and J we introduce the following general
axioms:

Al. For any two alternatives a,b the values of P(a,b), I{a,b) and J(a,b) depend
only on the values R(a,b) and R(b,a). o
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According to Al (which is called *independence of irrelevant alternatives” in
[6]), there exist three functions p,1,7 : [0,1] x [0,1] — [0, 1] such that

P(a,b) = p(R(a,8), R(5,a), (3.1)
I(a,b) = i{(R(a,b), R(}, a)), (3.2)
J(a,b) = j(R(a,b), R(b,a)). (3.3)

A2. p(z,y) is nondecreasing sn sts first place and nonincreasing sn sts second place;

t(z,y) is nondecreasing with respect to both arguments;

7(z,y) 18 nonincreasing in each one of sts places. O

A2 is called a ”positive association” principle in [6].

A3. I and J are symmetric relations. m]

Clearly, A3 is equivalent to ¢(z,y) = #(y, z) and j(z,y) = j(y,z) for every
z,y € [0, 1]. However, asymmetry of P may be ambiguous. We discuss this problem
later.

In summary, our models can be described by (p, 1,7, T, S,n) where p,t,; are
functions according to (3.1), (3.2) and (3.3), respectively, with properties given by
A2 and A3; (T, S,n) is a De Morgan triple.

Denoting z = R(a,b), y = R(b,a) for short, properties (1.1) — (1.4) can be
translated as follows:

S(p(z,y),i(z,v)) = =, (3.4)
T(p(z, y),i(z,y)) =0, (3.5)
T(p(z, y),j(z, y)) =0, (3.6)
T(¢(z,v),5(z,v)) = 0 (3.7)

for all z,y € [0, 1].

In the following we investigate three systems of functional equations related
to (3.4) — (3.7).

4. SYSTEM I AND ITS MAXIMAL SOLUTION

This section is based on results obtained by Ovchinnikov and Roubens [7|.

We assume that (T, S, N) is a strong De Morgan triple. Moreover, according
to the classical definitions of I and J, suppose that

i(z,y) = $(N(z), N(y))- (4.1)
In addition, P must be asymmetric, i.e.

min{P(a,d), P(b,a)} =0 (4.2)
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for all a,b € A. It was proved in 6] that P is asymmetric if and only if
z < y implies p(z,y) = 0 for all z,y € [0, 1]. (4.3)

Thus System I consists of equations (3.4) — (3.7), (4.1) and (4.3). Denote by
o a solution set of System I. This set is a partially ordered set with respect ot the
relation X defined by

(py,3,T,S,N) 2 (p',¢', 5", T",S', N') if and only N(z) < N'(z)

for every z € [0, 1]. Denote the set of maximal elements of o with respect to X by
Omax- This set is completely described in the next theorem.

Theorem 4.1. (7] (p,%,7,T, S, N) belongs to onax 3f and only if there ezists an
automorphism ¢ of the unit interval such that

p(z,y) = ¢'1(max{¢(z) - ¢(y),0}),

t(z,y) = min(z,y),

3(z,y) = min(¢7(1 - ¢(z)), 4" (1 - ¢(v))),

T(z,y) = ¢~ (max{¢(z) + ¢(y) - 1,0}),

S(z,y) = ¢} (min{4(z) + ¢(y),1}),

N(z) = ¢7'(1 - ¢(2)),
for all z,y € [0,1]. o

In the next section we generalize System I by taking any strict negation n
instead of strong negation N. Fortunately, we can completely characterize any
solution set o,,.

5. SYSTEM II AND ITS SOLUTION

It was assumed in Fodor [2] that (T, S,n) is a De Morgan triple, i.e., n is a
strict negation. System II consists of equations (3.4), (3.5), (4.1) and (4.3). The
following result is true.

Theorem 5.1. (2] (p,1,7, T, S,n) fulfils System II if and only if
T 1s any continuous t-norm with zero divisors,
n 13 any strict negation such that n(z) < T~ (z,0),
S5(z,y) = n™}(T(n(z), n(y))),
p(z,y) = n7H(T™ (n(y), n(2))),
t(z,y) = min(z,y),
7(z,y) = min(n(z),n(y))
for all z,y € [0,1]. o
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It was also proved that if (p,t, 7, T, S, n) fulfils System II then (3.6) and (3.7)
are also satisfied. The following theorem answers the question of unique solution
in n and gives a simple formula for p.

Theorem 5.2. (2] Assume that the conditions of Theorem 5.1 hold. Then
n(z) = T (z,0)
if and only if p(z,0) = p(1,n"1(z)). In this case n=n"! and
p(z,y) = T(z,n(y)). o

Notice that, of course, this solution set is the same as oy ax-

6. SYSTEM HOI AND ITS SOLUTION

It is clear from the previous results that the most important equation is (1.1)
(or equivalently, its translation (3.4)) when we try to determine p, ¢ and 5. (1.1)
has an equivalent form in the crisp case: R = RUJ, which means in our situation
the following

S(p(z,9),3(z,¥)) = n(y). (6.1)

Now System III consists of equations (3 4) and (6.1), without any assumptions
on the form of p, 1 and j. Its solution is given in t.he next theorem if P is supposed
to be asymmetric, i.e. (4.3) holds for p.

Theorem 6.1. [2] Assume that P is asymmetric. Then (p,t,5,T,S, n) fulfils
System III if and only if (p,+,7,T,S,n) belongs to omax of System I, i.c. if and
only if there ezists an automorphism ¢ of the unit snterval such that

p(2,9) = 4~ (max{$(z) - 6(5),0)),

i(z,y) = min(z,y),

3(z,y) = min(¢71(1 - ¢(z)), ¢~ (1~ ¢(v))),

T(z,y) = ¢~ (max{¢(z) + ¢(y) — 1,0}),

S(z,y) = ¢~ '(min{¢(z) + ¢(y),1})

N(z) =¢7'(1 - ¢(z))
for all z,y € [0,1]. o

A thorough reading of proofs of results above shows that there is a great
influence of asymmetry defined by (4.2). A way of weakening (4.2) is that of using
a t-norm T instead of ’min’ in definition (4.2). We obtain a less restrictive condition
only if T has zero divisors.

If we drop out any kind of asymmetry and deal only with System III, i.e. with
equations

S(p(z,y),i(z,y)) = =,
S(p(:l:, y),J'(I, y)) = n(y)
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then the following results are valid.

Theorem 6.2. (5] If (p,1,7,T, S, n) fulfils System III then the following statements
are true:

(a) (T,S,n) s a strong De Morgan triple, i.c., there exists an automorphism of
the unst snterval such that representations (2.1) — (2.3) hold.

(b)
T(z,n(y)) < p(z,y) < min(z,n(y)),
T(z,y) < i(z,y) < min(z,y),
T(n(z), n(y)) < 5(z,y) < min(n(z), n(y)).

(c) P is T-asymmetric, s.c. T(P(a,b), P(b,a)) =0 for all a,b € A.
(d) PUP'uIuJ=AxAie,
S(P(a,b), P(b, a), I(a, b), J(a, b)) = 1 for all a,b € A. 0

Closing this section, some particular solutions of System III are presented.

Example 6.1. (Alsina[l]) Assume that p(z,y) = Ti(z,N(y)) and i(z,y) =
Ti(z,y) where T; is any continuous t-norm. Alsina proved that (p,1,T, S, N) fulfils
equation (3.4) if and only if there exists an automorphism of the unit interval such
that (T, S, N) has the representation (2.1) — (2.3) and Ti(z,y) = ¢~ 1(¢(z)é(y))-
O

Example 6.2. (Fodor and Roubens [5]) Assume that p(z, y) = i(z,n(y)). If i(z,y)
is a t-norm then the only solution is given by Example 6.1. However, if we drop
out associativity then another solution is the following:

(T, S, n) is represented by(2.1) — (2.3) with an automorphism ¢ of the unit interval,

i(z,y) = ¢ (min{¢(z),¢(y)} + I;I&X{¢(z) - ¢(y),0}) ,

1(z,y) = i(n(z), n(y))-
Moreover, it is clear that if ¢;(z,y) and i3(z,y) are two functions such that
pr(z,y) = sx(z, n(y)) (k = 1,2) then (p,1,7, T, S,n) also satisfies System III, where
(T, S,n) is as above, i(z,y) is defined by
i(z,y) = ¢ [A (1 (2, ¥)) + (1 = N)$(32(=, )]

and p(z,y) = i(z,n(y)), 7(z,y) = i(n(z), n(y)). o
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