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STUDY OF L-FUZZY SIMILARITIES

Lé4szl6 Filep
Bessenyei College,
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Abstract: Here we define the concept and properties of L-fuzzy relations on
a fuzzy set A of a set X. Then we study the properties of composition of these
relations. The algebraic structure of L-fuzzy relations, specially similarities are
also studied. '
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1. INTRODUCTION

Let X be aset, L = (L,A,V,0,1) = (L, <) a complete, completely distributive
lattice. A map A: X — L is called a L-fuzzy set on X, whose family is denoted
by F(X), which is again a complete, completely distributive lattice under the
operations defined by the operations of L. The Cartesian product of A € F(X)
and Be F(Y):

(A x B)(z,y) = A(z) A B(y), ¥(z,y) € X x Y.

An R< AxBE€e F(X x Y) is said to be a L-fuzzy relation on A x B. If
X =Y and A = B we speak about a L-fuzzy relation on A. In this case we define
the diagonal relation D, as follows:

[ A(z), fz=y
Da(z,y) = { 0, otherwise

V(z,y) € X x X.
The converse R™! of on R< AX BE F(X xY):
R™(z,y) = R(y,z), Vz,y€Y x X.

The product of L-fuzzy relations R< AXxBe€ F(XxY)and Q< BxC¢€
F(Y x Z) is defined by

(R o Q)(z,2) = Vyer (R(z,¥) A Q(y, 2)), V(z,2) € X x Z.
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A L-fuzzy relation R on A € F(X) is called: a) reflexive, if D4 < R; b)
symmetric, if R~! = R; c) transitive, if Ro R < R. Such an R is said to be a

L-fuzzy similarity on A € F(X). Denote by S(A) their family, and by R(A) the

family of all L-fuzzy relations on A.
2. RESULTS

Theorem 1. (R(A),<) 1s a complete lattice. a

Proof. Let {R;};c; be an arbitrary (nonvoid) family from R(A). Define the L-
fuzzy relation R as follows.

R(z,y) < iggR;(z, y), Vz,y€X.

Since L is a complete lattice, hence R is well defined. By the definition of
infimum we have
R(z,y) < Ri(z,y), Viel, Vz,ye X.

Moreover, from this we get:
R(z,y) < Ri(z,y) < A(z) A A(y), Vz,y€ X,

that is R € R(A) follows. Hence R is a lower bound of the family { R;};e; in R(A).
Now let @ € R(A) be such that Q < R; for all 1 € I. Then also by the

definition of infimum
Q(z,y) < inf Ri(z,y) = R(z,y), Vz,y € X,

i.e. @ < R. This proves that R is the greatest lower bound of the family {R;};er
from R(A), in other words

R = inf R;.
€l
Hence by [2,p.21] R(A) is a complete lattice. n
Theorem 2. S(A) 1s a closure system on A x A€ F(X x X). o

Proof. Let {S;};er be any family from S(A). Obviously S; € R(A) for each 1 € I,
that is
Si(z,y) < A(z) A A(y), Viel, Vz,ye X.

Since by Theorem 1 R(A) is a complete lattice, consequently

(AiEISt')(I) y) = AiEIS%'(z’ y) < A(z) A A(y)’ Vz,y € X.
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that 18 Aje1S; = infie; S; =85 € R(A).
Furthermore, from the reflexivity of each S; there follows

S(z’y) = AiGISl'(zi y) 2> AiEIDA(zs y) = DA(z’y) sty € X:

i.e. S > D4, which proves the reflexivity of S.
The symmetry of S easily follows from the equality (using the symmetry of
each S;):
NierSi(z,y) = NerSi(y, z), Vz,y€ X.

To show the transitivity of S we write

(S 0 8)(z,y) = (AierSi o AierSi(z,y) =
= Viex ((AierSi(z, 2) A (AierSi) (2, ¥)) =
= NierSi(Viex)Si(z,2) A Si(z,y) =
= Aier(Si © Si)(z,¥)) < NerSi(z,y) =
= (NerSi)(z,y) = S(z,y), Vr,y€ X,

that is S oS < S which was to be proved. ]

We have showed that the meet of any family {S;};es of L-fuzzy similarities on
A € F(X), so S(A) is really a closure system on A x A.

Proposition 1. A x A is an L-fuzzy similarity on A € F(X). o
Proof. The statement A X A € S(A) is an immediate consequence of Theorem 2:
the base set is always a member of any closure system on it. ]
Theorem 3. (S(A), <) is a complete lattice. a
Proof. Consequence of Theorem 2. See e.g. [1,p.35]. [ ]

Theorem 4. The composition of L-fuzzy relations 1s well defined, 1.e. if
R<AXB€eF(XxY) and Q< BxCeF(Y x Z),

then
RoQ<AXxCeF(Xx2Z). o

Proof. By definition

R(z,y) < A(z) A B(y), VY(z,y) € X xY,
Q(z,2) < B(y)AC(z), Y(y,2) €Y x Z.
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From these by the monotonicity of A we get.

R(z,y) A Q(y,2) < (A(z) A B(y)) A (B(y) A C(2)) =
= A(z) AB(y)AC(z) S A(z) AC(2) A1 =
= A(z) A C(2)

for all (z,y,2) € X XY x Z. Consequently it is also true that

Vyer (R(z,y) A Q(y,2)) = (R0 Q)(z,2) < A(z) A C(2)
for all (z,y) € X x Z, which was to be proved. ]
Theorem 5. The composition of L-fuzzy relations ss associative. o

Proof.Let R< AxB € F(XxY), Q< BXxCe€ F(YxZ)andT < CxD € F(Zx
W). By Theorem 4 RocQ < AXC € F(XxZ),(RoQ)oT < AxDe F(XxW).
Similarly: Qo T< BxDe F(Y xW),Ro(QoT)< AxDe F(X xW).

Now let (z,w) be any element of X x W, and write

(RoQ)oT)(z,w) = Viez((RoQ)(z,2) AT(2,w)) =
= Viez(Vyer (R(z,9) AQ(y,2)) AT(2,w))) =
= Viez Vyer ((R(z,y) A Q(y,2)) AT(z,w)) =
= Vyer (R(z,9) A V2ez(Q(y,2) A T(2,w))) =
= Vyer (R(z,y) A (Q o T)(y, w)) =
= (Ro(QoT))(y,w).
|

Theorem 6. The composition of L-fuzzy relations on A € F(X) 1is isotone, s.c. if
R,Q,T€ R(A) with R< Q, then RoT < QoT and ToR< To Q. o

Proof. By Theorem 4 RoT, Qo T, T o R, T o Q all are elements of R(A). Let
(z,y) be an arbitrary element of X x X. Then for any z € X by our assumption
R(z,z) < Q(z,y). Moreover, by the monotonicity of meet in L we have

R(z,y) AT(2,y) < Q(z,2) AT(2,y)
for all z € X, consequently for their union, too,

Viex (R(2,2) AT(2,9)) < Viex(Q(z,2) A T(2,9)).
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But the left hand side here is (R o T)(z, y), and the right hand side is (Q o T)(z, y)
for any (z,y) € X x X. Thus we get the desired result:

RoT<QoT.
The other statement can be proved similarly. [ |
Theorem 7. (R(A), <,0) s a lattice ordered monoid. a

Proof. Considering Theorems 1, 4, 5 and 6, it suffices to show that D, is the
identity for o. Really, for any z,y € X and any R € R(A):

(R oDy (zv y) = VIGX(R(I’ z) A Dy (z, y)) =
_{R(z’y)AA(y)s ifz=y

Viex (R(z,2) A0) =0, fz#y
= R(z,y) A A(y) = R(z,y),

since R(z,y) < A(z) A A(y) < 1A A(y) = A(y) by definition. We can analogously
show that (D4 o R)(z,y) = R(z,y) for all z,y € X. Thus Ro D4 = D4 o R, what
we wanted to show. u

Proposition 2. If R € R(A) is reflezive, then R(z,z) > R(z,y) for allz,y € X.O
Proof. R(z,y) < A(z) A A(y) < A(z) A1 = A(z) = R(z,z), Vz,y € X. [ ]

Theorem 8. The L-fuzzy similarsties are sdempotent element in the monosd
(R(A4),0). o

Proof. Let z,y be arbitrary elements of X, and let S € S(A). Then
(S0 8)(z,y) = Viex(S(z,2) A S(2,9)) 2 S(z,2) A S(3,y) =
= 5(z,y)
by Proposition 2. But by transitivity
(S0 5)(z,y) < S(2,9)

is also true any z,y € X. Thusreally S oS = S, as stated. =
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