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Abstract: An attempt is given to the algorithmic definition of fuzsiness by the
analogy with the algorithmic definition of randomness. Behind the algorithmic
approach some kind of observability is also supposed and our aim is to find
a mathematical model for the irreducible uncertainty when the extension of
the observations doesn’t give more certainty. The visual demonstration is
shown on two dimensional infinite resolution black and white pictures. The
frequency approach and Kolmogorov admissible selection is used to define the
observable greyness at a given point which gives the value of the membership
function. Basic properties of the fuzzy pictures, operations with them and finite
representations are also discussed.
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The aim of the paper is to discuss the possibility of an algorithmic definition
of fuzziness following the analogy of the algorithmic definition of randomness.
Although algorithm and randomness may seem to be opposite concepts, all
known mathematically exact definition of randomness are based on the theory of
algorithms. A very exciting summary with deep explanations can be found in the
paper of Kolmogorov and Uspensky (1], [2]. There are three different definitions
for the randomness of infinite binary sequences. In this paper we shall use only
one of them, the von Mises-Church-Kolmogorov randomness which is based on the
stability of relative frequencies in every algorithmically selected subsequence.

For a finite string we can not put the question of randomness. The right
question is: how random is the given string’.

The answer is the measure of the defect of randomness and the appropriate
concept is Kolmogorov’s A-randomness based on the Kolmogorov entropy. The
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behaviour of very long A-random sequences for small A can be approximated
from above by the properties of infinite sequences. This means, that for relatively
simple algorithmic investigations a A-random string looks the same as an infinite
random sequence.

Similar definitions and investigations can be extended for one kind of observ-
able fussiness. A simplified intuitive definition of that kind of fussiness is the
following: to each point of a fussy set an infinite randomness is associated but it
is represented by the properties of points in small surroundings of the given point.
This concept will be defined and investigated for two dimensional black and white
colored pictures.

The formal definition of fussy sets (see [3]) is given by membership functions
that are extensions of the indicator functions of ordinary sets. For ordinary sets
the assertion that point z belongs to set A is either true or false and the indicator
function of A x4(z) is 1 or O respectively. Extending the domain {0,1} of the
indicator functions to the interval [0,1] we get as a formal generalisation the class
of the membership functions of fussy sets. The membership function u,(z) of the
fuszy set A tells us that the statemement ’z belongs to A’ fulfils at level u,(z).
But what does it mean? Are our observations incomplete and making observations
on other parameters would result in a sure 0 and 1 value? Or are we facing up to
a phenomenon where all of our efforts to reduce the uncertainty are in vain? Has
fuzziness something common with stochastics and randomness or is it something
different? All these questions should be answered by the theory of fussy sets and
systems if we want to use them in real applications.

1. INTUITIVE CONCEPT OF THE IRREDUCIBLE
UNCERTAINTY

An important kind of uncertainty is when the extension of the observations
doesn’t give more certainty, all the details show the same uncertainty. Demon-
strating this phenomenon we show two different models for the ground set which
consists of only a single point z and the membership function is u,(z) = %

In both models there is a black sheet with a hole in the center. Behind the
sheet there is a moving tape with cells colored black or white.

In model 1. the tape is finite and circular, half of its cells are colored black,
half are white. We stop the tape randomly, and we can either see a point on the
sheet or not. The average number of the observed white cells gives the uncertainty
and according to the law of large numbers it tends to 1/2.

In model 2. the tape is infinite and is randomly colored - for example according
to an infinite series of tosses of a fair coin. Let us suppose that the cells are labelled
and we can position the tape. Let us choose an algorithm that can select cells for
observation and for stopping. The general form of this kind of algorithms is given
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by Kolmogorov, see in part 2. Again, the average number of white cells where we
have stopped the tape will converge to 1/2 for each algarithm.

Model 1. shows the case of incomplete observation and leads to a probabilistic
interpretation of fussiness.

At first sight model 2. can look the same. But here we have the poesibiliy
to observe any detail by selecting long sequences from anywhere on the tape still,
the uncertainty remains the same. This kind of fussiness is just the same as the
randomness of infinite sequences.

We extend this approach for a more realistic model, the two-dimensional black
and white pictures. As an introductory demonstration we show Fig 1. and Fig 2.
The readers should guess which one shows fussiness. Fig 1. is colored like a chess-
board and Fig 2. is colored randomly. On each picture half of the cells is colored
black, half is colored white and the number of the cells is 350x640. Fussiness is
reflected on Fig 2.: the grey level is the same at any detail and the same time the
coloring is irregular, chaotic. Approximating this coloring by an infinite coloring
we get a picture of irreducible uncertainty. Next chapter contains the mathematical
model of this phenomenon.

2. FUZZY PICTURES OF INFINITE RESOLUTION

Our aim is to give a model that approximates the behaviour of finite, high
resolution pictures from infinite resolution.

Let the ground sheet of the picture be the unit square X = [0,1] x [0,1]. We
consider observable infinite resolution pictures. So the set of colored points forms
an everywhere dense recursive set of computable points. The points are colored
black or white and the color of a point is observable.

Before the formal definition of the picture we need the following notations:
N - the set of nonnegative integers,

R - the set of nonnegative rational numbers,

1 - the set of infinite binary sequences,

E - the set of finite binary strings,

A - the empty string.

Definition 1. An observable black and white picture of infinite resolution is given
by the recursive function loc(n, k) : N x N — R x R and the coloring sequence
§enl.

The location of the n-th colored point is limg_, o loc(n, k) = (zn,yn) € X and

|(zn) yn) - loc(nv k)l < i (1)
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The color of the n-th point is given by the n-th bit of { = a;a3..., that is

o = 1, if the n-th point is black
™7 10, ifitis white.

The set S = {z : z = limg— o loc(n, k), n =1,2,...} must be everywhere dense in
X. o

On finite pictures we can determine the grayness at a given point as the average
proposition of black points in a small neighbourhood. On infinite picture we need
to select infinite sequences of points near the given point and to define observable
grayness by the limit of relative frequencies. The exact definition needs the notion
of the Kolmogorov selection algorithms.

Definition 2. rm (Kolmogorov selection) A Kolmogorov selection algorithm K
selects subsequences from infinite binary sequences K(£) : @ — QUE. K is given
by a pair of partial recursive functions, OBS(c) : £ — N and SEL(0) : E — N.

The first element of ¢ to be observed is a;,, with s; = OBS(A), and a, is
selected if SEL(A) = 0.

Then, if after k steps a;,, ..., a;, have been selected for observation, the index
of the next element to be observed is OBS(a;,, @i,,. .., @i,) = tk+1, if it is defined
and tx4) # 15, J < k. The element a;, ,, is selected by K if

SEL(a;,a;, ...a;,) =0, and
~ SEL(ai, i, ... ;) is defined for 5 < k.

The algorithm ends if one of the functions OBS and SEL is not defined or x4 = ¢;
for some 5 < k.

The output of the algorithm, K () is the subsequence n = 8,5, ... (which can

be finite if the algorithm ends). o

The set of Kolmogorov algorithms is denoted by K.

Let Q be an open rectangle with corners of finite binary coordinates. We can
restrict Kolmogorov selections to select colored points from Q : the n-th bit from
€ can be selected only if loc(n,2,) € Q. The restriction of K € K is denoted by
Kq. (Kq itself is a Kolmogorov selection). Denoting Kg(€) by (B182...), and
introducing

S R
I‘(Kr Q) f) = nll’n;o inf ; ;ﬂi)

: 1 ¢
V(K’ Qr f) = "ll.n;o sup ; 2 Bi,

the set of the observable grey levels on Q is the interval [u(Q, £), v(Q, £)] where

u(Q,€) = jnf w(K,Q,€) and
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v(Q, €) = sup v(K, Q,¢).
Kek

Definition 8. (Greyness at computable points) Let z € X be a computable point,

oo
and Q; D Q2 D ... a (recursive) set of open rectangles with (| Q, = z.

n=1
#(z,€) = lim p(Qn,¢)
is the lower and
v(2,€) = lim v(Qn,¢)
is the upper observable grey level at z. m]

It can be easily proved that u(z, ) and v(z, £) are uniquely determined.

Though colorings are arbitrary, the functions u(z, ) and v(z, ) have the nice
property of semicontinuity for all £ € ,

u(z,€) < lim inf y(yn, £) and
Yn—Z

v(z,€) > lim supv(yn, §) for all
Yn—2

sequences v, ¥a, . . . of computable points.

In the special case when u(z, £) = v(z, £), the function p and v are continous
at point z. Computable points of a picture can be characterised by the functions
4 and v.

Definition 4. The point z is homogeneus if y(z, §) = v(z, §). o

Definition 5. The point z is d-jumping if for any open rectangle Q, z € Q there
exist K, € K, K3 € K such that
V(KlaQsE)+dSI‘(K2)Q)€)- 0O

Definition 8. Point z is oscillating if for all k there exists an open rectangle z € Q
such that for all K € K

KK, Q,€) < p(z,8) + %,
V(":Q:E)Zy(z)f)—%' o
The existence of oscillating points is not trivial, my son A.Benczir (4] gave a proof

of it. He has discussed the behaviour of restrictions of Kolmogorov algorithms
“different from the one used in Definition 3.
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Definition 7. The picture givén by the function loc(n, k) and the coloring sequence
£ is a fussy picture if y(z, £) = v(z, €) for all computable z. 8]

Fussy pictures represent a special kind of fussy sets, they have continuous
membership functions. Observability means that u(z, £) is computable by oracle .
Fussy pictures with the same membership function u(z) constitute an equivalency
class, and it is the observable representation of fussy sets with membership function

u(z).
Equivalency of nonhomogeneus pictures is more complicated.

8. OPERATIONS FUZZY PICTURES

We shall sketch how can operations on fussy sets be interpreted by operations
on fussy pictures. There are some operations that can be defined on individual
pictures, most of the operation can be defined on equivalency classes and there are
some that lead to inhomogeneus pictures. Here we show only some examples.

- Visual interpretation: pictures on transparencies, fixed set of colored points,
binary operation on coloring sequences, independent colorings

Complement: negative picture, binary negation of £, u(z) =
1— u(z).
Union: putting transparencies on each other, binary or of
€1, €3, p1(z) U pa(2) = p1(2) + pa(z) — pa(z)pa(z)-

Intersect: binary and of £, &3,
B1(2) N pa(z) = p1(z)p2(z)

- Observable union of pictures:
P = {locl("'v k)v f}t P = {IOCZ(”! k)s 62}5
P, U P; = {loc(n, k), £}, where ¢ is the alternating merge of £; and £; and

_ Jloci(m, k) if n=2m+1
loc(n, k) = {loc;(m, k) if n=2m.

Then
#(z, €) = min(p(z, €), ua(z, £))
V(Z, E) = mu(yl(za f), Vﬂ(zs f))-

For fussy pictures u(z, £) can be interpreted as the minimum intersection, and
v(z, £) as the maximum union.
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- Projection and direct product )
The projected observable greyness over an interval I is given by

p(I % [0,1],€), u(I x[0,1],§),

and the projected greyness at the computable point z; is
w21, €) = iminf (L, x (0,1],¢)
A2y

and
v(zi, €) = limsupy(I, x [0,1],£).
2]
Let (p1(z1),v1(21)) and p3z(z2),v2(z3)) be two colorings on [0,1]. The direct
product coloring has the coloring functions u(z,y), v(z,y) given by

[6(2, ¥), (2, 9)] = [11(=), 11(2) ] N [m2(y), v2(y) -

Figure 3 shows the direct product of projected colorings of Figure 4.
4. FINITE PICTURES

A finite resolution picture consists of pixels of equal sise - squares of sise 27"
for example. We can get finite pictures from infinite colorings in the following way.

For the sake of simplicity suppose, that loc(n, k) enumerates the set of points
with finite binary coordinates in lexicographical order. Let n(z,y) denote the
number of point (z,y) according to this enumeration. Using a coloring sequence
& = ajay... we color the squares of size 27", so that the color of the square with
bottom left corner (z,y) is given by ap(;,y)-

For large n a finite picture tends to behave like an infinite picture. This means
that for simple tests — simple selection algorithms in relatively larger sets than
2~ " — the finite coloring function approximates the infinite ones.

Finite fuzsy pictures for a given continuous membership function u(z) can be
constructed by random number generators. Associating to the square of bottom
left corner (z, y) the grey level m(z,y) € R and |m(z, y) — p(z, y)| < 2™ we choose
an(z,y) to one with probability m(z, y).

All the pictures were made by Tibor Dobor using the above mentioned
algorithm.

The compressibility of a good quality picture with known computable u(z,y)
is —22" [ u(z)log, pu(z) + (1 — p(z))logy(1 — p(z))dz + o(22"). This estimation

X

can be easily obtained from elementary properties of the conditional Kolmogorov
entropy.
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5. INTERFERENCE OF STRONGLY DEPENDENT
PICTURES

During the preparation of the transparencies for my talk on the Conference I
came to put the transparency of Fig. 1., 2. on the original laser printer picture. I
observered unexpected circles on Fig. 2. as you see it on Fig. 5.

Now the general law of this effect is clear. If we put two transparencies on each
other and both are made from the same random coloring with small transformation
of the sheet we can observe curves following the transformation. For example a
small rotation shows circles, as in Fig. 5, and a magnifying shows rays from the
center (Fig. 6.), and magnifying with rotation shows curves of whirling. (Fig. 7.)
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Fig.1.
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Fig.4.
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Fig.5.



Andris Benczir

32

Fig.6.
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