CONDITIONS FOR OPTIMALITY OF C(S)-VALUED FUNCTIONS

J. ZUBIRI

In this paper an infinite dimensional generalization of Slater optimality, the so-called weak K-optimality is studied. In terms of tangent cones, necessary conditions for weak K-optimality were obtained and applied by Z. Varga in [1] and [2]. Here we prove necessary and sufficient conditions for weak K-optimality of C(S)-valued functions, applying a scalarization method obtained in [3].

1. Preliminary concepts and results

Let Z be a real Banach space and suppose that $K \subset Z$ is a closed, convex and sharp cone. Sharpness means that

$$K \cap (K) = \{0\}.$$

The pair (Z, K) will be called an ordered Banach space. For any $z_1, z_2 \in Z$ we shall write

$$z_1 \le z_2$$
 if $z_2 - z_1 \in K$,
 $z_1 < z_2$ if $z_2 - z_1 \in K/\{0\}$.

In the case of int $K \neq \emptyset$, we shall also use the notation

$$z_1 < z_2$$
 if $z_2 - z_1 \in \text{int } K$.

Let $A \neq \emptyset$ be an arbitrary set and $f: A \rightarrow Z$ a given function.

Definition 1. Suppose that int $K \neq \emptyset$. An element $x_0 \in a$ is said to be weakly K-minimal for the function f if there is no element $x \in A$ such that

$$f(x) < f(x_0).$$

As a synonym of weak K-minimality we shall also say that x_0 is a solution of the weak K-minimization problem

$$(P_w)_{x \in a}^{f(x) \to \text{weakK-min}}$$

In the particular case of $Z = \mathbb{R}^n$ and $K = \mathbb{R}^n_{+0}$, for a function $f: A \to \mathbb{R}^n$ weak K-minimality is nothing else than Slater minimality.

We shall use the following concept due to Corley /see [4]/.

Definition 2. Given a topological space a, a function $f: A \to Z$ is said to be lower K-closed if for every $z \in Z$ the set $f^{-1}(z-K)$ is closed.

Throughout this paper, let S be a compact Hausdorff topological space and Z = C(S) the Banach space of all real-valued continuous functions on S with the usual supremum norm. Let K be the usual order cone in C(S),

$$K = \{ z \in C(S) \mid z(s) \ge 0 \quad (s \in S) \}.$$

Consider an arbitrary function $\rho \in C(S)$ with $\rho(s) > 0$ $(s \in S)$, or equivalently $\rho \in \text{int} K$.

Definition 3. We define the norm generated by the weight ρ in the following way

$$||z||_{\rho} = ||\rho z|| = \max_{s \in S} \rho(s) |z(s)| \quad (z \in C(S)).$$

It is clear that C(S) is a Banach space with respect to this norm.

Definition 4. The function f is called lower K-bounded with a lower K-bound $\varphi \in C(S)$ if

$$\varphi < f(x) \quad (x \in A),$$

or equivalently

$$R_f \subset \varphi + \mathrm{int}K$$
.

We assume that the function f is lower K-bounded with a lower K-bound φ , and for each $\varphi \in \text{int} K$, and consider the scalar minimization problem

$$|| f(x) - \varphi ||_{\rho} \rightarrow \min$$

$$(P_{\rho})$$
 $x \in A.$

Now we recall two theorems from [3] which relate vector optimization problem (P_w) to the family (P_ρ) of scalar optimization problems.

Theorem 1. Suppose that an element $x_0 \in A$ is a solution of problem (P_w) . Then there exists a function $\rho \in \text{int} K$ such that x_0 is a solution of problem (P_ρ) .

Theorem 2. Let A be a compact topological space and $f: A \to C(S)$ lower K-closed. Suppose that $x_0 \in A$ is a solution of the problem (P_{ρ}) for some $\rho \in \text{int} K$. Then x_0 is weakly K-minimal for f.

We also need some basic concepts and results from non smooth optimization theory /see [5]/.

Definition 5. Given a subset $B \subset Z$ and a point $z_0 \in B$, the normal cone of B at z_0 is defined in the following way

$$N(z_0) = \partial \delta_B(z_0)$$

where $\delta_B:Z\to \bar{R}$ denotes the indication function of B:

$$\delta_B(z) = \begin{cases} +\infty & \text{for } z \in Z/B \\ 0 & \text{for } z \in B. \end{cases}$$

Given a function $g: Z \to R$, consider the following problem

$$g(z) \to \min$$

$$(P_B)$$

$$z \in B.$$

From [6] we recall

Proposition 1. Let $g: Z \to R$ be a convex function, $B \subset Z$ a convex set. Assume that g is continuous at some point of B and $z_0 \in B$. Then z_0 is a solution of the problem (P_B) if and only if

$$0 \in \partial g(z_0) + N_B(z_0).$$

2. A necessary condition for optimality

Theorem 3. Let f be lower K-bounded with a lower K-bound $\varphi \in C(S)$ and suppose that $R_f \subset C(S)$ is convex. If $x_0 \in A$ is a solution of problem (P_w) then there exists a regular Borel measure μ in S such that

$$1^{0} \int_{S} f(x_{0})d\mu = \min_{x \in A} \int_{S} f(x)d\mu,$$

$$2^{0} \int_{S} [\varphi - f(x_{0})]d\mu = \min_{s \in S} \rho(s)[\varphi(s) - f(x_{0})(s)],$$

$$3^{0} |\mu| \leq \max_{s \in S} \rho(s)$$

where $|\mu|$ is the total variation of the measure μ .

Proof. 1⁰ Let x_0 be a solution of (P_w) . Then by theorem 1 there exists a weight $\rho \in \text{int} K$ such that x_0 is a solution of the problem

$$|| f(x) - \varphi ||_{\rho} \rightarrow \min$$
 (P_{ρ})
 $x \in A.$

Hence $f(x_0)$ is a solution of the problem

$$g(z) := \min \| z - \varphi \|_{
ho} \rightarrow \min$$
 $(Q_{
ho})$
 $z \in R_f$

By proposition 1 we have:

$$0 \in \partial g(f(x_0)) + N_{R,t}(f(x_0)).$$

This means that there exists a functional $z^* \in C_{\rho}(S)^*$ such that

$$z^* \in \partial g(f(x_0))$$

where $C_{\rho}(S)$ denotes the space C(S) with the norm $\| \|_{\rho}$, and

$$(2) -z^* \in N_{Rf}(f(x_0)).$$

From the definition of the normal cone it is easy to see that

$$\langle z^* m f(x_0) - z \rangle \leq 0 \qquad (z \in R_f).$$

In other words

(3)
$$\langle z^*, f(x_0) - f(x) \rangle \leq 0 \quad (x \in A).$$

Moreover, for all $z \in C(S)$ we have

$$|\langle z^*, z \rangle| \le ||z^*||_{\rho} ||z||_{\rho} =$$

(5)
$$||z^*||_{\rho}||\rho z|| < ||z^*||_{\rho}||\rho||||z||$$

where $||z^*||_{\rho}$ denotes the norm of z^* as an element of $C_{\rho}(S)^*$.

From (4) and (5) we obtain that $z^* \in C(S)^*$ and

(6)
$$||z^*|| < ||z^*||_{\rho} ||\rho||$$

Therefore by the Riesz representation theorem there exists a regular Borel measure μ in S such that

$$\langle z^*, z \rangle = \int_{S} z d\mu \qquad (z \in C(S)).$$

This inequality (3) implies that

$$\int_{S} f(x_0) d\mu \le \int_{S} f(x) d\mu \qquad (x \in A)$$

which is the same as 1° .

 2^0 From the relation (1), for all $z \in C(S)$ we have

$$\langle z^*mzmf(x_0) \rangle \leq g(z) - g(f(x_0))$$

(7)
$$= ||z - \varphi||_{\rho} - ||f(x_0) - \rho||_{\rho} \le ||z - f(x_0)||_{\rho}.$$

Let $u \in C(S)$ arbitrary and define

$$z = f(x_0) + u.$$

Substituting (8) into (7) we get

(9)
$$\langle z^*, u \rangle \leq ||u||_{\rho} \quad (u \in C(S)).$$

Hence

(10)

$$||z^*||_{\rho} < 1.$$

Taking $z := \varphi$ in (7) we have

(11)
$$\langle z^*, \varphi - f(x_0) \rangle \leq - ||f(x_0) - \varphi||_{\rho}$$

or

$$(12) \langle z^*, f(x_0) - \varphi \rangle \leq ||f(x_0) - \varphi||_{\rho}.$$

On the other hand, with $u = f(x_0) - \varphi$, (9) implies

(13)
$$\langle z^*, f(x_0) - \varphi \rangle = ||f(x_0) - \varphi||_{\theta}$$

In terms of the measure μ , obtained in the proof of 1^0 from (1) we obtain

$$\int_{S} [f(x_0) - \varphi] d\mu = \max_{s \in S} \rho(s) \mid f(x_0)(s) - \varphi(s) \mid = \max_{s \in S} \rho(s) [f(x_0)(s) - \varphi(s)]$$

Therefore

$$\int_{S} [\varphi - f(x_0)] d\mu = \max \rho(s) [f(x_0)(s) - \varphi(s)] = \min_{s \in S} \rho(s) [\varphi(s) - f(x_0)(s)]$$

which is 2^0 .

3/ Inequalities (6) and (10) imply that

$$|\mu| = ||z^*|| \le ||z^*||_{\rho} ||\rho|| \le ||\rho||$$

Hence 3⁰ holds. Theorem 3 is proved.

Under additional topological assumptions, we have the following sufficient condition:

Theorem 4. Let A be a compact topological space $f: A \to C(S)$ lower K-closed and lower K-bounded with a lower K-bound $\varphi \in C(S)$. Suppose that for some $x_0 \in A$ there exists a regular Borel measure μ in S and a weight $\rho \in \text{int} K$ such that relations $1^0, 2^0$ and 3^0 hold.

Then x_0 is weakly K-minimal for f.

Proof. We clearly have

$$|| f(x_0) - \varphi ||_{\rho} = \max_{s \in S} \rho(s) | f(x_0)(s) - \varphi(s) | =$$

$$= \max_{s \in S} \rho(s) [f(x_0)(s) - \varphi(s)] =$$

$$= -\min_{s \in S} \rho(s) [\varphi(s) - f(x_0)(s)].$$

Let $x \in A$ be arbitrary. Then by 1^0 and 2^0 we obtain

$$|| f(x_0) - \varphi ||_{\rho} = \int_{S} [f(x_0) - \varphi] d\mu =$$

$$= \int_{S} f(x_0) d\mu - \int_{S} \varphi d\mu \le \int_{S} f(x) d\mu - \int_{S} \varphi d\mu =$$

$$= \int_{S} [f(x) - \varphi] d\mu \le || \mu || || f(x) - \varphi ||$$

Since f is lower K-bounded with a lower K-bound φ , by condition 3 we get

$$\| \mu \| \| f(x) - \varphi \| = \| \| \mu \| [f(x) - \varphi] \| =$$

$$= \max_{s \in S} \{ | \mu | [f(x)(s) - \varphi(s)] \} \le$$

$$\le \max_{s \in S} \rho(s) [f(x)(s) - \varphi(s)] =$$

$$= \| f(x) - \varphi \|_{\rho}.$$

Therefore

$$|| f(x_0) - \varphi ||_{\rho} \le || f(x) - \varphi ||_{\rho} \quad (x \in A)$$

i.e. x_0 is a solution of the problem

$$||f(x) - \varphi||_{\rho} \to \min$$
 (P_{ρ})
 $x \in A.$

Hence, by theorem 2, x_0 is weakly K-minimal for f. Theorem 4 is proved.

References

- [1] Z. Varga: "On saddle points of vector-valued functions," in Existence of solutions, stability and information in game theory, Kalinin State Univ. Publ. Kalinin 1979, 3-19 /in Russian/
- [2] Z. Varga: "Antagonistic Differential Games with Vector-valued pay-off functions," Ph. D. Thesis, Moscow State University /1979/1-117 /in Russian/
- [3] J. Zubiri: "Scalarization of Vector Optimization Problems Via Generalized Chebyshev Norm": Mathematical Analysis and Systems Theory V, Publ. of K. Marx Univ. of Econ. Dept. of Math. Budapest, /1989//accepted for publication/
- [4] H.W. Corley: "An Existence Result for Maximizations with respect to cones," J. Optim. Th. Appl. 31/1980/277-281
- [5] A.D. Ioffe and V.M. Tihomirov: "Theory of Extremal Problems," North Holland /1979/
- [6] E. Zeidler: "Vorlesungen über Nichtlineare Funktionalanalysis III

 Variatinsmethoden und Optimierung," Teubner Verlgsgesellschaft,
 Leipzig /1977/

J. ZUBIRI

Central University of Venezuela

Received: July 15, 1989.