Annales Univ. Sci. Budapest., Sect. Comp. 11 (1991) 175-191

ON MATRIX METHODS FOR OPTIMIZATION
OF GENERALIZED AUTOMATA

M.K. TCHIRKOV

1. Introduction. Automata optimization is one of the most important
(as in theory so in practice) problem of mathematical automata theory.In this
paper the classical problem of an automaton states minimization is investigated
for finite generalized automata over arbitrary field. The optimization methods
proposed are founded on construction of two basis matrices of an automaton
and on using of them for special trunsformation of the automaton. Since a
generalized automaton is natural generalization of some special classes of finite
automata thus these methods may be used (sometimes with some remarks)
for optimization of special classes automata. Such methods, for example, are
very important for optimization of some systems and processes which may be
described in terms of generalized automata over any field. The conceptions

of this paper are the further development of the ideas and methods, stated in
[1-5].

2. Basic definitions. By an alphabet X we mean a finite non-empty
ordered set of elements. | X | is the cardinal number of the set X. A finite
sequence w = z1Z3...2¢ (z; € X,t > 0) is called a word over X, andt =| w | is
the length of w. We use the notations X* and X* for the set of all words over
X and for the set of all words of length ¢t over X, respectively.

If F is an arbitrary field (for example, the field of real numbers), the
following notations are used for the sets of all m-dimensional row-vectors, m-
dimensional column-vectors and (m x n) - matrices over F : F1.m Fm1 pmn,

Let X, A,Y be the alphabets of inputs, states and outputs, respectively,

and | X |=n,| A |=m,| Y |= k. Then finite generalized automaton A over
the field F is a system

A=< X,AY,r,R,q>, (1)

where r(€ F1™) is the initial vector, ¢(€¢ F™?) is the final vector and R :
X XY — F™™ is the transition-output function which presents a mapping of
X x Y into F™™. The mapping R is usually represented by a set of square
matrices

{R(z,y)} = {R(z,y) | R(z,y) e F™™,z € X,y €Y}.
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The domain of this mapping is extended from X xY to X* xY* in the following
way

R(w,v) = {.-131 Rizi,w) W0, @
I(m) ift=0,

where w = z1z...2¢ € X*, v = y1y2...t € Y* and I(m) is the unit matrix of
type (m x m).

The generalized mapping ® 4 induced by a generalized automaton A is the
mapping of X* x Y* into F defined by

oaton)= {700 TR @

Hereafter we use the term automaton to mean a finite generalized automa-
ton.

Let

'A < X’ A) Y’ r) {R(zYy)})q >’
A =< X, AY, v {R(z,y)},¢ >

be the automata over the field F,| A |= m,| A’ |=m'.

The initial vector r in the automaton A (with the final vector ¢) and the
initial vector 7' in the automaton A’ (with the final vector ¢’) are said to be
equivalent (in notation: r.A(g) ~ r’A’(¢’)) if for these initial vectors

P 4(w,v) = Par(w,v) 4)

for each (w,v) € X* x Y™*.

We say that an automaton A is initially reduced if for every » € F1'™ and
every r' € F1m

rA(q) ~T"A(Q) <= r=r". (5)

The automata A and A’ are called initially equivalent (in notation A(q) ~
A'(¢")) if for each r € F1™ there exists +' € F1™ such that for r,r’ (4) holds
and vice versa.

Every initially reduced automaton A’ such that A4’(¢') ~ A(q) is said to
be the initially reduced form of the automaton A (in notation: A’ = Red A(q)).
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Accordingly, the final vector ¢ in the automaton A (with the initial vector
r) and the final vector ¢’ in the automaton A’ (with the initial vector r’) are
called equivalent (in notation: (r)Aq ~ (')A’¢’) if for ¢, ¢’ (4) holds.

We say that an automaton A is finally reduced if for every ¢ € F™! and
every ¢ € F™1

(r)Ag ~ (r)Ad =q= q. (6)

The automata A and A’ are called finally equivalent (in notation: (r)A ~
(r')A) if for each g € F™! there exists ¢ € F™ ! such that for ¢,¢’ (4) holds
and vice versa.

Every finally reduced automaton A’ such that (')A’ ~ (r)A is called the
finally reduced form of the automaton A (in notation: A’ = Red(r)A).:

The pair of the vectors (r, ) in the automaton .4 and the pair of the vectors
(r¢’) in the automaton A’ are called equivalent (in notation:rAq ~ r.A¢’) if
for these pairs (4) holds.

We say that an automaton A is in a minimal form if there is not any
automaton A’ such that (4) holds and | 4’ |<| A |.

By a minimal form of an automaton A we mean every automaton .A’ which
is in a minimal form and such that (4) holds (in notation: A’ = MinA).

In accordance with above definitions some problems of generalized au-
tomata optimization may. be formulated. Let A be the automaton (1). It is
necessary to construct:

a) an initially reduced form of the automaton A;

b) a finally reduced form of the automaton A;

¢) a minimal form of the automaton A.

3. Basis matrices of an automaton. For stochastic automata the
concept of a £-basis matrix is known [1-3,5]. The furthermost generalization
of this concept for a generalized automaton (1) over the field F' may be made
in the following way [4].

Let £(Agq) be the m-dimensional vector space, generated by the set of
column-vectors '

L(Ag) = {hq(w,v) | hy(w,v) =
= R(w,v)q,we X", veY", |w|=|v |} \ (7)

Then a matrix H(Aq) of type (m x dimL(Aq)), which consists of & system of
linearly independent column- vectors of the space £(.Aq) is called the £(g)-basis
matrix of the automaton A.
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Now, let £(r.A) be the m-dimensional vector space generated by the set of
row-vectors

‘C("-A) = {hr(w’ U) | h"(w! v) =
=rR(w,v),we X", veY*, |w|=|v]|}. (8)

Then a matrix H(rA) of type (dimL(rA) x m), which consists of a system of
linearly independent row-vectors of the space £(r.A), is called the L(r)-basis
matrix of the automaton A.

For construction of the matrices H(Aq) and H(rA) may be used, for ex-
ample, the simplified procedure which was proposed by the author in the books
[1,2].

Now we are going to study a few properties of the matrices H(.Aq) and
H(rA). Let H*(Aq) and H*(r.A) are the pseudo inverse matrices [6] of H(A¢)
and H(rA), respectively. Since the columns of the matrix H(Ag) are linearly
independent and the rows of the matrix H(r.A) are linearly independent thus
the matrices H+(Agq), H*(rA) may be given by the expressions

H*(Aq) = (H"(Aq)H(Aq))™" H*(Aq),
H*(rA) = H*(rA)(H(rA)H*(rA))"?, 9)

where H* is the conjugate matrix of the matrix H and H~! is the inverse
matrix of the matrix H [6].

It follows from (9) that

H*(Aq)H(Aq) = I(rankH(Aq)),

H(rA)H*(rA) = I(rankH(rA)). (10)
In accordance with the definition of a pseudo-inverse matrix [6]
H(rA)H*(rA)H(rA) = H(rA),
H(Aq)H*(Aq)H (Aq) = H(Aq)
and therefore
he(w,v)H* (rA)H(rA) = hy(w,v),
H(Agq)H* (Aq)hy(w,v) = hy(w,v) (11)
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for every h.(w,v) € L(rA) and every h (w,v) € L(Aq), respectively.
The following statement is true.

Theorem 1. Let A be an automaton (1) and H(rA) be its £(r)-basis
matrix. Then for arbitrary ¢,¢’ € F™!

(r)Aq ~ (r)Aq' & H(rA)g = H(rA){'. (12)
Proof. It follows from (4), (8) that
(r)Aq ~ (r)Ad & h (w,v)q = h,(w,v)q
for every (w,v) € X* x Y*.Then
(r)Agq ~ (r)Aq' < hq = h¢'
for each h € L(rA). Since the rows of the matrix H(rA) form a basis of the

vector space £(r.A) thus (12) holds. Q.e.d.

If we take (4), (7), the next statement may be proved by the analogous
method.

Theorem 2. Let A be an automaton (1) and H(Aq) be its L(g)-basis
matrix. Then for arbitrary r,r’ € F1 ™

r.A(g) ~1r'A(q) © rH(Aq) = r' H(Ag). (13)

4. Some theorems on reduced forms. Let us now prove some state-
ments on reduced forms of a generalized automaton.

Theorem 3. An automaton A is finally reduced if and only if rank
H(rA)=|A].

Proof. It follows from (12) that

(r)Aq ~ (r)Aq' & H(rA)(q—¢') = 0.

Then, accordingly with the definition, the automaton A is finally reduced if
and only if the system

H(rA)(g-4¢)=0
has no non-trivial solution (¢g—q’) # 0 and therefore if and only if rank H{r A) =
|A].Qed.

The analogous statement may be proved for initially reduced automata
sirnilarly.

Theorem 4. An automaton A is initially reduced if and only if rank

H(Ag) =141
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The following property of a finally reduced automaton is important.
Theorem 5. If an automaton

A < X: A)vyv TA, {RA(.’B, y)}v qa >
is finally reduced, then there does not exist an automaton

B =< XaB)Y) TB{'RB(I,y)},QB >

such that (r4)A ~ (rg)Band | B |<|A].

Proof. Let us assume that the inverse proposition is true and there exists
an automaton B such that (rg)B ~ (r4)A and | B |= mp <| A |= m4. Since
the automaton A is finally reduced thus, by Theorem 3,rankH(raA) =m

Let

¢ =(0,..,0,1,0,..,07, i=T,ma,
be degenerate final column-vectors such that the element 1 isin the position
number i. Assume now that
(ra)Ad} ~ (r8)Bay), Tma,
where

Then in accordance with (3), (4), (8)

K (w,0)¢ = KB (w,v)qf), T,ma,
or ‘

R (w, v)I = h{B)(w, v)Qp, (14)

where Qp = (qg)qg). (m‘)) is the matrix of type (mp x ma).

Now we take the: palrs of the words (w,,v,),v = 1,my4, in such a manner

that the row-vectors hr )(w,,,v,,) v = 1,my,, are linearly independent and
therefore these row-vectors are the rows of £(r4)-basis matrix H(r4.A) of the
automaton .4 and, by Theorem 3,

rankH(raA) = my. , . (15)
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From (14) we have

H(rA) = HpQp, (16)

where the rows of the matrix Hp are the row-vectors th)(w,,, v), v=1my4.

The matrix Hpis of type (mp X m4) and the matrix @p is of type (m4 x
mp), where mp < mj. Therefore, by Sylvester law of nullity [6],

rank(HpQp) < mp < my4. (17)

But (17) contradicts with (15), (16). Therefore our assumption is untrue and
such an automaton B does not exist. Q.e.d.

The analogous theorem may be proved for initially reduced, automata
similarly.

Theorem 6. If an automaton
A< X, A Y, ra,{Ra(z,v)},q4 >
is initially reduced, then there does not exist an automaton
B =< X,B,Y,rg,{Rs(z,y)},98 >

such that A(ga) ~ B(¢gp) and |B|<|A].

5. Methods for construction of reduced forms. Let us prove the
following statement.

Theorem 7. Let A be an automaton

.A =< XyAaY’ rA) {RA(E', y)}’ q9a >

and H(Aq4) be its £(qa)-basis matrix. If an automaton

B=< X,B,Y,TB,{RB(-’B,y)},QB >

is such that forz € X, y€Y o
Rp(z,y) = HY(Aqa)Ra(z,v)H(Aqa), . (18)
B = raH(Aqa),q8 =H*(Aqa)qa,

then
(a) B = RedA(qa), |B|=mp =rankH(Aqa),
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H(Bgs) = I(ms);

(b) H(rpB) is the matrix which may be formed of a system of
linearly independent rows of the matrix H(r4A)H(Aga) and
rankH(rgB) = rank(H(raA)H(Aq4));

(c) for every pair {(r,q),r € F1™4 g€ L(Aqa) there is the pair
(v',¢’) such that

v =rH(Aqa), ¢ = HY(Aqa)g, rAgq~r'B¢

and

r € L(raA) = r' € L(rpB);

(d) for every pair (r,¢'),r' € F1™8 ¢’ € F™B:1 there is the pair
(r, ¢) such that

r=r'H*(Aqa), 9= H(Aqa)q € L(Aqa),

rAq ~ r'Bq’
and
r € C(‘I‘BB) =>re E(TA.A)
Proof. First of all let us prove that

A(ga) ~ B(gs).

Let r be an arbitrary r € F1'™4, Then

P (w,v)=r H Ra(zi,vi)qa.

=1

Since g4 € £(Aqga4) and

t
R (wy,v,) = [ Ralzi, 3:)aa € L(Aga)

i=v

for z; € X,y € Y, v = 1,¢, thus in accordance with (11),(18)

(19)

(20)
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Pu(w,v) = "HRA(li,yi)QA =

i=1

= r TIUH (A H* (Aaa)Ra(mis I(H (g H* (g Y)aa =

= rH(Aqa) [J(H*(Aga)Ra(zi, ) H(Aqa) | H (Aga)qa =

i=1

=r' [ Re(zi, w)as = ®5(w,v), (21)

i=1
where

r' = rH(Aqa). (22)

Conversely, let ' be an arbitrary ' € F1'™8 then in accordance with (18)

t
®p(w,v) =1’ H Rp(zi,¥i)9B =
i=1
t

= r' [[[H*(Aqa)Ra(zi, v:) H(Aqa)lH (Aga)qa =

= r'H*(AqA)RA(zl,yl)H[H(AqA)HﬂAqA)R(z.-,y.-)lx
xH(Aqa)H* (Aqa)qa.

Since (11) and (20) hold thus, by consecutive application of (11) for ¢4
and h(qA)(w,,,y.,),u =t,t—1,..,1, we have

O5(w,v) = r'H*(Aga) [ Ra(=i, vi)aa =

i=1

t
= TH Ra(zi,yi)ga = ®a(w,v),

i=1
where r = r' H*(Aqa). Therefore A(qa) ~ B(¢p),

h{B) (w,v) = H*(Aga)h{* (w, )
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and

H(Bgp) = I{+(AqA)H(AgA) = I(rank-H(Aqa))-

Then, by Theorem 4, we proved the statement (a).
Now let us find the rankH(rpB). In accordance with (18)

t
hB(w,v) = rg [[ Re(zi, ) =

i=1.

=rp H[H+(AqA)RA(zi,ys)H(-AQA)] =

i=1 f
(23)
=raH(Aqa)H*(Aqa)x

t-1

x JT(Ra(z:, ) H (Aga) H* (Aga)IRa(2e, ye) H (Aga).

i=1

Since for every h € L(Aga) the condition (11) holds thus

H(w,v) = [] Ra(zi, v:)H(Aqa) =

= H(Aqa)H*(Aga)H(w,v) = H(w,v).
Therefore from (23) we have '

t
h{B)(w,v) = ra [] Ra(ei, w:)H(Aga) =
i=1
(29)
= hi"(w, v)H(Aqg4) € L(rsB),
and £(rp)-basis matrix H(rgB) of the automaton B may be made of a system

of linearly independent rows of the matrix H(r4A)H(Agqa). This completes
the proof of the statement (b).

Now let us take a pair (r,q),r € F1.™ q € E.(.:AqA). Since ¢ € £(.Aqa) thus
the £(g)-basis matrix of the automaton A (with g) is just the same as with
ga. Therefore (21), (22) holds for g4 = ¢. From (24) we have

r € L(raA) = rH(Aq4) € L(rBB).
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This ends the proof of the statement (c).
Conversely, let (', q’) consists of arbitrary #' € F1™8 ¢' € F™5:! then

(I’B(w! v) =7 H RB(Z,‘, y.')q' =

i=1

= ' [[IH*(Aga)Ra(zi, u:)H(Aga)ld =

i=1
= /H* (Aga) [[1Ra(ei, ) H(Agn) B (Aa)]x

X Ra(ze,y:)H(Aqa)q'-

Since H(Aga)q' € L(Aqga) thus for ¢ = H(Aqa)q' and for

t
h(qA)(wu; ’U,,) = H RA(zi)yi)q € E(AqA)) v= -L_t:

v=1

(11) holds. Therefore we have

Bp(w,v) = v H*(Aqa) [ Ra(ei, 9:)H(Aga)g' =

(25)
=r[] Ra(zi, ts)g = ®a(w,v),
i=1

where r = r' H*(Aq4) and ¢ = H(Aqa)q' € L(Aqa).
If 7 € L(rpB), then, by the statement (b), there is such a row-vector
(e1,c¢2,...,¢n),n = rank H(r4.A), that

= (C],Cz,...,Cn)H(TA.A)H(.AqA). (26)

In this case we have from (11), (25), (26)

®p(w,v) = (¢1,¢2,...,¢p)H(raA) HRA(z:.-,yi)q =

=1
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i
=r[[ Ra(zi, v)a = ®a(w,v),

i=1
where r = (c1,¢2, ..., ¢y ) H(raA) € L(r4A). Q.ed.

For L(r)-basis matrix of the automaton A the analogous statements may
be proved similarly.

Theorem 8. Let A be an automaton
A < X)A1Y7 TA, {RA(I)y)}7qA >
and H(raA) be its £(r4)-basis matrix.
If an automaton
D =< X,D’Y: ™D, {RD(Z) y)}qu >

is such that forz € X,,y €Y

RD("") y) = H(rA-A)RA(z) y)H+(rA'A)v
(27)
rp = TAH+(7‘AA),qD = H(rA.A)qA,

then

(a) D = Red (ra)A,| D |=mp = rank H(raA), H(rpD) = I(mp);

(b) H(Dgp) is the matrix which may be formed of a system of linearly
independent columns of the matrix H(r4.A)H(Aga) and
rank H(Dqp) = rank (H(raA) x H(Aqa));

(c) for every pair (r,q),r € L(raA),g € F™41 there is the pair (r',¢)
such that ' = rH*(r4A),q’ = H(raA)q, rAq~ r'Dg and
q € L(Ag4) = ¢' € L(Dgp);

(d) for every pair (', ¢'),r' € F1™p ¢’ € F™p:1 there is the pair
(r, ) such that

r=1"H(raA) € L(raA), ¢ = H*(raA){,

rAq ~ r'Dq’

and
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q’ € ﬁ(DqD) =>qE€ £(Aq,4).

Theorems 7 and 8 and the known methods for computation of matri-
ces H(raA), H(Aqa), H*(raA), H*(Aqa)[1,2,6] give us effective methods for
construction of the initially or finally reduced forms of generalized automata.

6.Methods for construction of minimal forms. Now let us prove the
following statement.

Theorem 9. Let
A < X,A,Y, TA, {RA(zyy)}r qA >

be an automaton and H(r4.A), H(Agqa) be its L(r4) - and L(g4) - basis ma-
tricies, respect_;ively. Then A is in a minimal form if and only if

rankH(raA) = rankH(Aqa) =| A | .

Proof. The necessity of this theorem conditions is obvious. Let us show
the sufficiency. We assume that the inverse proposition is true and therefore
an automaton B =< X, B,Y,rg, {RB(z, )}, ¢B > exists such that

®u(w,v) = ®p(w,v), we X*,veE Y, (28)

and mp =| B |{<| A |= ma. Let w,v be such that

w=wwy, v=vvy, |w |=|v1 |, [w2]=|va]. (29)
It follows from (2), (3), (4), (28) that

lwal jw)

Sa(w,v) = [ra [[ Rales, )] [] Ralzi,w)aa] =

i=1 i=|w,|+1

Jwi| fw|

= [TB H RB(:B,', y.-)] [ H RB(zi; yi)qB] = QB(w! v)
1=1

i:lw:|+l
and therefore
hg“)(wl, vl)hg")(wg, vy) = hSB)(wl, vl)hSB)(wg, v2) (30)

for arbitrary wy,ws € X*,v1,v2 € Y*, which satisfy to the conditions (29).
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@

Now we take (w; ,vli)),i = 1,my, in such a way that the row-vectors

hSA)(wgi),vgi)),i = 1,my,, are linearly independent. 'Accordingly, we take
(wg‘), vg')), i = 1,m4, in such a way that the column-vectors th)(wg'), vg')), i=

1,my4, are linearly independent. Then it follows from (30) that

H(raA)H(Aqa) = HpQB, (31)

where the rows of the matrix Hp are the row-vectors '
th)(wl'), vi')),i = 1, my,, and the columns of the matrix Qp are the column-
vectors hSB)(wgi),vgi)),i = 1,m4. The matrix Hp is of type (m4 x mp) and
the matrix @ p is of type (mp x m4), where mp < m4. Therefore, by Sylvester
law of nullity [6],

rank(HpQp) < mp < ma. (32)

But in accordance with the theorem conditions
rank(H(ra A)H(Agqa)) = ma

which contradicts with (31), (32). Therefore our assumption is untrue and such
an automaton B does not exist. Q.e.d. The next theorem immediately follows
from Theorems 7,8,9.

Theorem 10. Let A be an automaton and H(r4.A), H(Aqa) be its L(r4)-
and L(ga)-basis matrices, respectively. Let¢ B =  RedA(qa)
(B = Red(ra)A) be the automaton constructed from A in accordance with
Theorem 7 (Theorem 8) and D be the automaton constructed from B in accor-
dance with Theorem 8 (Theorem 7). Then

(a) D = MinA;

(b) | D |= mp = rank(H(raA)H(Aq4));

(c) for every pair

(r,), 7 € L(raA), g € L(Aga) (33)
there is the pair
(Tl,q'), 1" € Fl,mp, ql € FMD,I’ (34)
such that
rdqg ~ D¢, (35)

and, conversely, for every pair (34) there is the pair (33) such that (35) holds.
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This Theorem gives us an effective method for construction of minimal
forms of generalized automata.

7. Algorithms of optimization. Let A be a generalized automaton
over the field F.The problems of generalized automata optimization which were
formulated in above may be solved now in the following way:

1) To construct H(rs.A) and H(Aga) (for example, using the procedure
proposed in [1,2]), to find H(rsaA)H(Aqa) and rank (H(rasA)
H(Aqa)).

2) If rank(H(raA)H(Aga)) <| A |, then to calculate H*(rs.A) and
H*(Agqa) in accordance with (9).

3) If rankH(Aqa) <| A | (rank H(raA) <| A |) then to find B =
RedA(qa)(B = Red(ra).A) using the contruction of Theorem 7 (Theorem 8).
If rank(H(raA)H(Aga)) =| B |, then B = MinA.

4)If rank(H(raA)H(Aqa)) <| B |, then to find matrix H(rpB) (H(Bgg))
and to find D = Red(rg)B(D = RedB(gp)) using the contruction of Theorem
8 (Theorem 7).In result we have D = MinA.

Example. Let A be the generalized automaton over the field of real
numbers defined as

A < X)A1Y) T, {R(z’y)}lq >’

where

X:{:L‘l}, A:{alya21a3aa4}; Y={y1,y2},
r=(0;0;0,5;0,5), ¢=(1,1,1,1)7,

0,2 0,3 0,1 0,1
0)1 0)4: 0’1 0’1
R(Il)yl) = 0’2 0 0)1 0’1 ’
072 0a2 0’1 0’1
0,1 0,2 0 0
| 0,2 0,1 0 0
R(z1,y2) = 0,1 0,1 0,2 0,2
02 0 Oal 0’1

It is necessary to find D = MinA.
First of all we construct £(r)-basis matrix and £(g)-basis matrix of A:

10 0 0
HrA)=[0 1 0 0 |,H(Ag=
0 0 05 0,5

OO = =
o~o o
—o oo
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0

1 0
H(rA)H(Aq) = (1 0 0 ) ,rank(H(rA)H(Aq)) = 2.
0

0,5 0,5

Since | A |> 2 thus we calculate the pseudo-inverse matrix

0,5 0,5 0 0
H¥t(Ag9)=|{ 0 0 1 0].

0 0 01

Using the construction of Theorem 7 we have

B =< X)BIY) rB, {RB(z,y)})QB >)

where

B = {blyb2yb3})
rg =rH(Aq) = (0;0;5;0:5)’

1
g = H*(Aq)g = (1) ,
1

0,5 0,1

RB(zl,yl) = H+(Aq)R(:c1,y1)H(Aq) = 0,2 0,1
0,4 0,1

0,3 0
RB(IX’y2) = H+(~A9)R(31,y2)H(A‘1) = 0)2 0)2
0,2 0,1
1 0

1 0 0

H(rsB) = (0 0,5 0,5) HHrs8) = (8 !

Using now the construction of Theorem 8 we have

D =< X,D,Y,rp,{Rp(z,y)},9p >,
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(1]

[2]
(3]

[4]

(5]
(6]

D ={dy,d2}, rp =(0,1), ¢p = (i)

0,5 0,2 0,3 0
RD(zl’yl) = (0 3 0 2) 1RD(zlay2)= (0 2 0 3))

D = MinA.
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