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APPROXIMATE SOLUTION OF THE
DIFFERENTIAL EQUATION WITH
SPLINE FUNCTION

N.A.A. RAHMAN

I. Introduction

Very many authors investigate the Cauchy problems with spline fuctions,
if the differential equation is ¥’ = f(z,y,y’). For example GH. Micula [3], T.
Fawzy (1], J. Gy6rvari [2], and others authors. In this paper we give also an
approximate solution for the Liouville type second order differential equation,
if the initial values are given. Our spline function is Hermite-type and in all
subinterval is identical with cubic polynomial. We will prove this Hermite type
spline function exists unique, approximate with ”best order” not only the ex-
act solution function, but its first, and second derivatives also. We remark our
spline function is very simple and very easy to investigate by computer pro-
gram, which is very important for the application. We know the Liouville-type
differential equation is very interesting for physics, chemistry and technique,
and have the following form

(1.1) y'(z) + A(2)y () + B(2)y(z) = F(=),
where A(z), B(z), F(z) are given functions. We suppose that the differential

equation (1.1) has unique solution in I : [0, b], if

(1.2) y(0) = o,/ (0) = 8

as are given initial values and the functions A(z), B(z), F(z) € C(I), i.e. are
continuous. In our paper we give for this Cauchy problem approximate solution
with method ” Hermite-type spline function”.

II. Definition for the Hermite spline function and convergence theo-
rem

Let given be in I a nodel point system

(2.1) A=A,: 0=20<2;<...<Z{<Zi41<...<Zp_1<zTp=0b
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1.e.

{zi}]—y; where zj31 —z;=h; i=0,n—1

and
{¥(zi) = 4} o; 5=10,1 values.
Our Hermite-type spline function will be denoted by Sa(z, y),

(2:3) Sa(z,y)CW (1),

and satisfy the following condition

(2.4) SO@in) =SP@)=u s=0,1

In all subintervals I; : [z;, 2;41],i = 0,n — 1 the spline function is identical with
cubic polynomial, i.e. with minimal degree. Our spline function can be written
in the following form

(2.5) Sa(z,y) = yi+yi(z—z))+ai(z—z;) 2 +bi(z—12;)® = Si(z),i=0,n— 1

Obviously (2.5) spline function satisfies (2.4), if {z = z;}7—.
The condition (2.3) satisfies trivially if

(2.6) SN zip1) = Sy (zin) =4y s=0,1,i=0n-1

The equation (2.6) satisfies, if
1
(2.7) @i +bihi = 5 {yi+1 — v — gihi} = Fi

1
2a; + 3b;h; = 'h—j{yf-n -y} =Fj
]

where h; = 241 — 2;,i=0,n— 1 and h = maxh;.
1]
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From these equations we get

a;=3F,-F i=0n-1
2.8
28) b = %[F,-’ — 2F).

Let w(h,y") be the modulus of continuity for the function y”’(z) € C(I). It is
well-known in mathematics the definition of

(2.9) w(h,y") = Sup | y"'(z*) — y"(=™") |

where | z* — z** |< h,z*,z** € I, and it is true

(2.10) wh,y")<w,y"), fh<h
and
(211) w(Ah,y") < (A +1) w(h,¥')

for all A € R. Obviously w(h,y”) — 0 if A — 0. From Taylor expansion, we
get (see 2.7)

(2.12) Fi= 2’12@’ zi <& < zip1

Fl =9y"(m), zi <ni < zig,

and (see 2.8) we have

a; = % (&) - y" (m)

(2.13) :
bi = h_,-{y”("") -y'(&)}

where z € [z;,2i41], i=0,n—1.
We can prove the following convergence
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Theorem 1. If y(z) € C(*)(I), then we have

(2.14) | ¥)(z) = S$ (=2, v) 1< Bw(h, y")h*™* 5=0,1,2
where Sa(z,y) was given in (2.5), and z € I.

Proof. For z € [z;,zi4+1],i = 0,n—1 (see 2.5, 2.8, 2.12, 2.13, 2.7, and
2.10) we have in z € I, maz | y'(z) — SX(z,y) |=|| v"(z) - Sx(z,y) [|=z € I; :

[zi,2i41),i=0,n -1

:I y" - 20,' - 6b.~(:r: - I;) l:

(2.15) =1¥'(2) - 30(6) + 2" () (4" (€} — 20 |=

=1 y"(2) — 3y"(&) + 29" (m:) — 6[y"(m:) — " (&) |,

where z = z; + th;,0 < t < 1, it is trivial that this has maximum either in
t =0 ort = 1. With simple calculation we find, if t = 0

(2.16) Il v"(z) = Sa(=, ) I< 3w(hi, y") < 3w(h,y")

and with ¢ = 1, we have

(2.17) | v"(2) — SA(=,) I< Sw(hi, y) < Sw(hi,y”)

By integrating (2.17), we get in z € I

(2.18) Il v/ (z) — Sa(z,v) lI< 5w(h, y")h

and by integrating (2.18) also we get

(2.19) | y(z) = Sa(z,y) lI< Sw(h, y")h.

From 2.17, 2.18, 2.19 we get the proof of Theorem 1. We remark if h — 0, then
Sg)(y,x) — y(*)(z) s =0,1,2, i.e. we have the convergence theorem.
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III. Approximate solution of the Cauchy problem for the Liouville
type of differential equation.

In this chapter we give approximate solution for the differential equation (1.1).
For the approximate solution we applied our Theorem 1. Let y(z) € C?*(I) be
the exact solution (1.1), we denote the exact value and approximate value with
yi and #; respectively in nodel point z;,i = 1,n. If { = 0 in this case

w=gp=c and yp=H=H =7
In the first approximation process, we calculate the approximate values §;, ¥},
i = 1,n. For the first approximation process a very good method was given
by T. Fawzy in this paper [1]. T. Fawzy with his method in [1] proved the
following inequalities

(3.1) |4 — 5 |< Cw(h, y")h?~* s = 0,1

and w(h,y”’) denotes the modulus of continuity y”’(z) in the interval I. C is
independent constant of h. With Fawzy’s method we calculate the set of ap-
proximate values

(3.2) YO 0 60, 8,8 s=0,1

and we denote the set of the exact values

(3.3) §’ ,yg"), y,(’),...,y,(,‘), s=0,1, n=0,1,2,3.

For a given mesh of points

34 A:0=z9<z1<...<2;{<2i41<...<ZTpn=b, ziy1—z;=h
i = 0,n—1. (Remark: Our method is true if the nodel point system is not

equidistant.) There exists a Hermite-type spline function Sa(z) interpolating
on the mesh A to the set Y, and statisfies the conditions

(3.5) Sa(Y,z) = Sa(z) € CO(I).
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(36) SA(:B) = S',-(z:) =y + g:(z — I,‘) + &,-(:c — :c.-)2 + 5,’(12 - 2:,')3,
z € I; : [zi,zi41],i = 0,n — 1, i.e. all our spline functions ‘in all subintervals I;
are cubic polynomial.

(3.7) S(2) =5 (2)=§,i=0,n—1,5=0,1,

Sg)(xn) = Sy(:_)l(zn) = f/,(,’),s =0,1,

and

38) Sz =S (@) =, i=0n—1,5=0,1.
In (3.6) the @;,b; values, i = 0,n — 1, we can calculate very simply similarly to
(2.8). From (3.6), (3.7), (3.8) obviously follows the existence and the uniqueness

of our Hermite type spline Sa(z). For the convergence theorem we need the
following lemmas:

Lemma 1. For a;,a;,i = 0,n — 1 we have the following inequalities

(3.9) | a;i — a; |[< Cw(h,y”
where C constant is independent of h.

Proof. For a; see (2.8) and (2.7), h = max h;,

(3.10) a;=3F,—F,i=0,n—1

where

1
F; = ﬁ{ym —yi — y;h},

1
(3.11) Fi= s {thn - v
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For a;,7 = 0,n — 1 we can use a very simple calculation (see (3.6), (3.7), (3.8)

(3.12) @G =3F - F],
where
F = hl—z{ﬂsn - % — #ih},
Fl = gy — ).

From (3.11), (3.12) and (3.1), we have by applying the triangular inequality,

J— 1
(3.13) | - Fi |< h—2{| Vier —Fig1 |+ vi—vi | +h | yi — i |} < 3Cw(h,y")
and
o 1 )
(3.14) | F{ — F] |< ﬁ{y','“ = Gigr |+ | ¥ — ¥ |} < 2Cw(h,y").

From (3.10), (3.13), (3.14), we have by applying the triangular inequality

(3.15) lai—a; |[<3| F— Fi | +| F{ - F{ |< Cw(h,y").

From (3.15) we get our lemma. Similarly with simple calculation we have the
following lemma.

Lemma 2. For b;,b;,i =0, n — 1 we have the following inequality

(3.16) | b — b |< 2w(h,y").

By using Lemma 1 and Lemma 2, we can prove the following convergence
theorem:

Theorem IIL. Let y(z) € C*(I) be the exact solution for (1.1), with initial
conditions (1.2), and Sa(z,y) defined by (3.6). Then we have the following
relation
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(3.17) | ¥)(z) = 5 (2, 9) 1< Kw(h,y")h2™* s=0,1,2
for z € I, and K is independent constant of h.

Proof. By using Theorem 1, (2.5), (3.6), (3.1), (3.9), (3.16) and triangular
inequality we have for z € I;,i = 0,n -1

| 4)(z) — 58(z, ) I<| () - Sz, y) |
+188(z,y) - 59(=z,9) I<
(3.18) < 5w(h, y")R* "+ | {ui + ¥i(z — z:) + ai(z — z:)*+

bi(z — 23) — % — Pi(z — ) — @i(z — z:)? — bi(z — 2:)°} |*~°
< Kw(h,y")h?-*)

(3.18) gives the proof of our theorem.
Remarks. 1) From the relation (3.17) follows if h — 0,n — oo then

$0(z,9) = y(@), s=0,1,2, for z€1.

2) Sa(z, ) spline function (3.6) satisfies the initial values (1.2). From Theorem
(IT) immediately follows the following

Theorem III. Sa(z — §) Hermite-type spline function is an approximate
solution of the differential equation (1.1) in z € I.

Proof. We denote with R(z) the following equality (see 1.1)

(3.19) R(z) = —A(z)S\(z,9) — B(z)Sa(z, §) + F(z).

Then from (1.1), (3.19), (3.17), with triangular inequality

(3.20) | v"(2) - R(z) I<| A(z) | | V() = Sa(z,9) |

+|B(z) | | y(z) - Sa(z,9) I<
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S le(h, y")h + MZW(h) y”)h2

where M; and M; are the maximum of | a(z) |,| B(z) | respectively in z € I.
So (3.20) gives us an approximation for the differential equation (1.1) if A — 0.

Remarks. 1) We can prove that all theorems in the case when I : [0,00). The
proofs are similar but in this case the (2.1) nodel point system is changed by
the following

=t ym
{z' - ¢(n) }£=0
where ¢(n) is arbitrary real function and satisfies p(n) > 0;n > 2 and

Tn — 00, when n — oo.

_n
p(n)
Obviously for the o(n) these conditions satisfy, if ¢(n) for example is n!~2,
when 0 < a < 1, or ¢(n) = €n(n),n > 2. For the infinite interval (I : [0, c0)
we suppose the function y(z) € C(®)(I) and the function y(z) is uniformly
continuous in I. The convergences are uniform in all arbitrary finite closed
interval 0 < z < A, A < I and we have pointwise convergence if z € I, and
n > ng, where ny depending on z.
2) If I : (—oo,00) and y(z) € CAN(I),y" uniformly continuous in I, in this
case if the mesh points for example are {z; = ;(‘;5}?=0 in [0,00), and in
(—00,0],{z; = —;(";5}};1, where p(n) > 01in [0,00) and the relation lim oy =
oo is satisfied. When all these conditions are n — oo satisfied, then all our the-
orems are also true.

3) If I : [0,00) or I : (—00,00) and y”’(z) is not uniformly continuous for
arbitrary closed subinterval I* C I, in this case we can simply prove all our
theorems, if n > no(z),z € I* € I.
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