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OPTIMAL PLANE ROTATIONS FOR
COMPLEX MATRICES '

LAJOS LASZLO

1. Introduction

By the classical Jacobi method, applied to a symmetric matrix A € R**"
we obtain the unitary matrix U of the eigenvector of A as a product of plane
rotations, while U* AU proves to be diagonal. It is evident trying to extend
this method to the complex non-Hermitian case, i.e. to find for A € C"*" as a

n
product of complex plane rotations with maximum diagonal Y~ | U* AU;; |2.
=1
Suppose that we are going to compute the optimal rotation in the i, j
plane. This means that we have to do with the 2 x 2 matrix

aii aj 1
3] o
Thus we can restrict our investigations in Theorem 1 to 2 x 2 matrices. We use
the following simplifying notation:

SRECR
c a aj; Qjj

Our basic result is Theorem 1, giving the maximum possible increase (7)
of the difference (3). (See also (11), the analogue to (7) in the general case).
The formulae (6) - (10) for the maximum increase as well as for the optimal
variables are expressed in terms of two real, three-dimensional vectors.

The matrix B = U* AU, obtained in the course of complex plane rotations
is, generally speaking, no more diagonal, but has a special structure: we refer to
it, starting from [1], as a A* H-matrix. We prove the result in [1] (that complex
matrices having maximal diagonal with regard to complex plane rotations are
exactly the A* H-matrices) on the basis of (7), see Theorem 2.

Unfortunately, even the normal matrices cannot be diagonalized in this
way, or equivalently: the normal A* H-matrices are not necessarily diagonal.

To illustrate this, a family of normal, nondiagonal A* H-matrices is given (c.f.
[2,p.237, Problem 10]).
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2. Maximizing the diagonal of 2 x 2 matrices.

Let A € C2*2 be arbitrary, U € C2*?be unitary, and A = U* AU, where

iofo 2ol 7l 8]
c a2 y z az

and [z |2+ |y |’= L

We seek for that z,y € C, for which | b |2 + | ¢ |? is minimum, or,
equivalently, | @; | + | @2 | is maximum. The equivalence is garanteed by
[l A||?=|| A ||?, where || - || denotes the Euclidean norm. Thus, the increase of
the diagonal sum | a; |? + | a2 |2, due to z,y is equal to

(s}

Sy =lar P +1al -(lar P +laa ) =6 +cP-(18 " +]E]*)
)
In the symmetric case A = A* we have l;op, = éopt = 0 and max é(z,y) =
2| b |%. Now, in the general case, we express the increase in terms of z, y.
Lemma 1.

6(z,y) =2 f(z,y) | — | a1 — a2 |* /2, where
f(z,y) = (a1 — a3)(] = |> =1/2) + bzy + czj.

Proof: In view of the trace equality @ + @, = a; + a; we have

lay 2+ | a2 |>=] a1 |* + | a1+az—ay |>= 2| é1—(a1+a2)/2 |* + | ar+az |? /2
=|(ar—a2)(|z > = |y |®)/2+bZy +czj |* + | a1 + a2 |* /2.

Finally, use | z |2 + | y |?= 1 to get the result.
Remark 1. We can assume, that z is real and nonnegative. Indeed, if Z =

z-sgn(z),y =y - sgn(Z), then §(z,y) = §(z,y). Moreover,
2 >1/2 4)

can also be assumed. To this end introduce, if necessary, # =| y |,§ =
= —zy/ | y |. Then f(2,3) = —f(=,y), and 6(z,9) = 6(z,y). Thus, the
increase due to z,y is given by

6(z,y) =2 | (a1 — az)(z* = 1/2) + bzy+czy |> — | ay — a2 | /2 (5)
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Let us introduce the following real vectors:
Re(ay — a3) Im(a; — a2 z2-1/2
p=| Re(b+c) |,gq=]| Im(b+¢c) | ,w=]| zRey (6)
Im(c —b) Re(b —¢) zImy

We can now solve the maximum diagonal problem is terms of p and gq.
Theorem 1. The maximum of é(z,y), subject to z > 1v/2,y € C, and z2+

|y |>=11is (c.f. (3) and (5)):
§=1/4{2(15 > + | ¢ |*)— | a1 — a2 |* + | (a1 — a2) + 4bec |} (M

As for the optimal variables, see (6), (8), (9) and (10).

Remark 2. Denote by A;, A, the eigenvalues of A. Comparising the different
forms for the discriminant of A yields:

| A1 = Az |2=| disA |=| (a) — a2)? + 4be | .

Thus, applying equality a; + az = A1 + A, we get the equivalent form

§=1/2{1b P+ P+ M P+ X P ~]a |~ |az |?}, (7

being more suitable for generalizations.

Proof: The chain of equivalent problems, listed below, results in a 2 x 2
eigenvalue-problem, being easily solvable. The first problem to be solved is
(see Lemma 1 and Remark 1):

(P1)
maz | (a1 — az)(z? — a/2) + bzy + czy |5,z > 1/V2,y € C, 2%+ |y |’= 1.
(Hint : Re f(z,y) = pTw, Im f(z,y) = ¢*w, hence

| £(2,9) IP= (#7w)? + (¢ w)? = w7 (pp + 0¢" ),
and || w||= (22 - 1/2)* + 22 | y [*= 1/4).

(P2) maz w” (pp” +¢¢" )w,w € R, || w||=1/2.

(P3) (ppT + 9¢7)w = Aw, A — maz, || w||=1/2.
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”pllz ] ] ] — maz,w =« w||=
(P4) qu ”qllz [ '—’\[ A =ap+ P, | wl=1/2

The larger root of the characteristic equation

2.2
st 171 |-
“Ipfe NalP-A
is equal to
=1/2{lp 1P+ 1 g 1P+l 2 1P = 1 ¢ I)? + (207 9)%)"/?} (8)

With the optimal variables, from (P3) we have | f(z, ) |>= w” (pp” +¢¢7)w =
Al w||?= A/4, thus by Lemma 1:

6(zay)=2|f(z’y) Iz— |al_a2 |2 /2:(1\—'01—02 |2)/2!

and in view of (8),

48z, ) =l p >+l g 1P+ 21> = 11 g 17 + (2P 9)*) /2 = 2| a1 — a2 |
Use now the indentitites

Re uv=Reu Rev—Im u Im v,
Imuw=Reulmv+Imu Rev

to get

Nl + 1 gliP=lar—az P+2(16 12 + | c|?),
211> = |l ¢ I>= Re((a1 — a2)? + 4bc),
2p7q = Un((a; — a2)? + 4bc),

showing that (7) is true.

Determine the optimal vector w, as the solution of (P4). If b = ¢ = 0,
then there is no increase (see (7)), and hence w = (1/2,0,0)7 can be taken.
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(This corresponds toz =1,y =0ie. U=1.If | b |2+ | c |2£ 0, then || p||> +
|l ¢ I?# 0 also is valid. The formulae for w are (apart from normalizing):

a) pTg=0:a0)||p|l=|l ¢ |I: w = ap+ Bg = 0 arbitrary

al) [[plI>llgll:w=p

a?) llpli<ligll:w=gq (9)
) pTg#0:01) |lpll2llgll:w=0~llalP)p+pTg-q

52) llpli<llgll:w=p"g g+~ llPI*)q

After this, w is to be normalized in accordance with

lwll=1/2% w >o0.

Finally, z and y can be determined as:

z = (w1 + 1/2)?, y = (wy + iw3)/z. (10)

Remark 3. The generic formulae b1) and b2) in (9) are - after normalizing -
identical. We distiguished between them only for the sake of numerical stability.
For the same reason we propose to apply the power method to the matrix in
(P4) for determining w.

Remark 4. The Hermitian case is included in al). (Note, that in this case
not only pTq = 0, but ¢ = 0 also holds). From (7) we have § = 2 | b |?, which is
identical with the maximum possible increase in the case A = A*. Therefore, in
view of the restriction z > 1/ V2, the classical Jacobi method, and the Jacobi-
like method based on Theorem 1 are in case of Hermitian matrices identical!

For completeness, we describe the k-th iteration step of this Jacobi-like
method, omitting for simplicity the index k. Note that the maximum increase
8;j in the 4, j plane can be determined from (7) taking into account (2).

The Jacobi-like iteration step:

Determine the indices ¢, j from

= 1/4{2(] aij |* + | aji 1*)— | aii — aj; > + | (aii — aj;)* + 4aijai |}
=maz{6yj;;1 < <j <n} (11)

and execute a rotation A — U*AU in the i, j plane with
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t, J
1 )
z -y i
U =Uij(z,y) = : (12)
vy oz J
I 1]

where z and y are given by (6), (8), and (10), c.f. (2).
3. Characterization of the plane rotation-optimal matrices

The above theorem enables us to characterize the 2 x 2 matrices, for which
the sum | a; |? + | a2 |? cannot be increased, i.e. §(z,y) = 0 is local maximum.
In this way we obtain a new proof for [1, Th. 6]. We need the following
concepts.

Definition 1. [1, Def. 1.] A € C"*" is a A H-matrix, iff

a;j = h,-j(a.-.- et ajj), h,‘j = ’.lj,' for 1# J

For brevity we use the following notation:
Definition 2. A € C"*" is a A* H-matrix, iff A is A H-matrix, and

|hil<1/2, 1<i#j<n.
In order to emphasize, that increasing can only be realized via plane rota-
tions, we introduce the following definition:
Definition 3. A € C"*" is plane rotation-optimal, or, in a word: pro-optimal,
lff for every pla.ne rotation U = u;j(z,y) € C"*" of the form (12) we have

Z | &is 2< E | aii |2, where A = U*AU = (a;).

Theorem 2. [1, Th. 6.] A € C is pro-optimal, iff A is A* H-matrix.
Proof: Note that both properties can be ” decomposed into properties of second
order”, more precisely A is pro-optimal (or: A is A* H-matrix), iff its any block
of the form (1) is pro-optimal (or: A*H-matrix). Therefore it is sufficient to
prove the theorem for n = 2. We use again the simple notation (2).

Necessity: First we rewrite the definition of A*H in terms of the matrix
elements. In view of Definition 2 we become that
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b= (a1 —a2)h, c=(az—ar)h, |h|<1/2 (13)

is equivalent to

lbl=lcl, be=—€*|b]?, 4]b|’<|a1~as [, (13)

where € = sgn(a; — a3).

Let now A be pro-optimal, i.e. § = mazé(z,y) = 0 (see (7)). The inequal-
ity | (a1 — a2)? + 4bc |>| ay — a2 |* —4 | bc | implies

0=6>(b|-1cl)?/2,

giving | b |=| ¢ |. From § = 0 we immediately have 4 | b |2<| a; — a3 |%. Finally,
from é = 0 again, it follows that

| a1 —az |2 =4 | b |*=| (a1 — a2)® + 4bc |=| €? | ay — a3 |* +4bc |=

|| a1 — a2 |2 +é&2be |,

whence by the ”equality part” of the triangle inequality we have

Ebc=—|b|? iebc=—€|b]?.

Sufficiency: Let A be A*H-matrix, i.e. it holds (13). Then the maximum
possible increase of the diagonal, multiplied by 4 is:

46:2(|b|2+|c|2)—|a1—a2 |2+|(a1—a2)2+4bc|
=4|a—az | h|P—|a1— a2 |°+ | (a1 — a2)?* + 4(a1 — a2)* | A |?|
=lay—az |2 (4|h 2=+ |a;—az |}|1-4|h|}|=0, qed.

Example: We give an example for normal, pro-optimal matrices without being
diagonal. First consider the following problem: ”Problem [2,p.237]: Let A =
(ake) € C**™ be the normal matrix with

_J-(n- 2)/262‘j’, L=k,
Tkt = eilintio), L%k,
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where v, = (p — 1)7/n,1 < p < n. Prove that, for n > 6 there is no complex
analogue of the classical Jacobi method, which decreases the square sum of the
moduli of the nondiagonal elements.”

Denote the above defined matrix by A,. In light of the above theorem, we
have to show that A, is A*H-matrix for n > 6. Indeed, using (13’), a direct
calculation leads to the result that A, is A H-matrix for every n > 2, moreover,
Ap is A*H-matrix, iff cos (2(jk — je)) < 1-8/(n—2)%,1 <k # 1< n,ie.
Ap is A* H-matrix, iff cos(27/n) < 1—8/(n —2)2.

This inequality is fulfilled for n > 6, specially for n = 6 the equality is true.
Thus, the statement of [2] is proved: the matrices An,n > 6 are pro-optimal,
therefore cannot be increased by any complex plane rotations.

Finally, we refer to an interesting phenomenon: In the practice the Jacobi-
like method applied to A, converges after all to the diagonal matrix of the
eigenvalues! This is true, of course, only owing to the rounding errors. Nev-

n
ertheless this means that, the local maximum of the diagonal sum Y | a;; |2
is for some pro-optimal matrices fairly instable, and a little perturb;tién - due
to the rounding errors - leads to the global maximum. It is worth noting that
for determining the vector w, we applied the power method (the von Mises
iteration) instead of the formulae (9).

Further informations on the normal A* H-matrices and a list of references
can be found in [3].

Summary

Complex square matrices having maximal diagonal with regard to plane
rotations can be characterized by means of their 2 x 2 blocks [1]. Here we give
explicite formulae for the optimal plane rotations needed to maximizing the
diagonal (Theorem 1). This enables us to give an alternative proof for [1; Th.
6], see Theorem 2. Finally, an example for normal matrices will be given.
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