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RECURRENCE RELATIONS
FOR THE COEFFICIENTS
IN ULTRASPHERICAL SERIES SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

E. H. DOHA

Abstract. A method is presented for obtaining recurrence relations for the coefficients
in ultraspherical series of linear differential equations. This method applies Doha’s method (1985)
to generate polynomial approximations in terms of ultraspherical polynomials of y(a:z), -1 <
z < 1,z € é, |Zl < 1, where ¥ is a solution of a linear differential equation. In particular,
rational approximations of y(z) result if T is set equal to unity. Two numerical examples are
given to illustrate the application of the method to first and second order differential equations. In
general, the rational approximations obtained by this method are better than the corresponding

polynomial approximations, and compare favourably with Pade’ approximants.

1. Introduction

The truncated Chebyshev series has been widely used in numerical analysis
as a good numerical approximation to y € C[—1, 1] using the supremum norm

Hylloo = sup ly(z)|
z€[-1,1)

Lanczos [1] and Handscomb [2] have compared the performance of truncated
Chebyshev series with truncated ultraspherical expansions. Light [3],[4] has
investigated conditions under which approximation to continuous functions on
[-1, 1] by series of Chebyshev polynomials is superior to approximation by other
ultraspherical orthogonal expansions. In particular, he has derived conditions
on the Chebyshev coeflicients which guarantee that the Chebyshev expansion of
the corresponding funtions converges more rapidly than expansions in Legendre
polynomials or Chebyshev polynomials of the second kind.

As candidates for the efficient representation of mathematical functions
by easily computed expressions, rational functions are often to be preferred to
polynomials. Indeed it has been found empirically that, in general, rational
approximations, can achieve a smaller maximum error for the same amount of
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computation than polynomial approximations, see for instance, Ralston and
Rabinowitz [5)].

The well-known effective means of producing rational approximations to a
function y(z) in a complex variable is to develop elements of Pade’ table from
its Taylor series. This table is a two-dimensional array whose (m,n) element
is defined as that rational function of degree m in the numerator and n in the
denominator whose own Taylor series expansion, Y oo, c,2" say, agrees with
that of y(z) up to and including the term in z™*+". Discussion of Pade’ table
and its convergence is considered in Bender and Orszag [6].

In Doha [7], a method for obtaining simultaneously polynomial and ratio-
nal approximations from Chebyshev and Legendre series for function defined
by linear differential equation with its associated boundary conditions has been
described.

Our principle aim in the present paper is twofold :

(i) to give an extension of Doha’s method, but the function y(z) and

its derivatives are expanded in ultraspherical polynomials C,(,a). This
extension, however, could be useful in applications.

(il) to compare computationally the performance of the rational approx-
imation obtained from Chebyshev series of the first kind and those
obtained from the ultraspherical series for varying o.

The ultraspherical expansions are defined by
e o]

¥(z) = ) aaC{"(z)
n=0

where the coefficient a,, are given by

_ f_ll(l — 22)2=}y(z)C{ (z)dz
11,0 - 2223 ()} de

(1)

and the C,(.a)(z) satisfy the orthogonality relation

1
/ (1- ) 3O @)CN)de =0 m#n, a>—1
-1

For our present purposes it is convenient to standardize the ultraspherical
polynomials so that

C{(1) = T(n + 2a)/T'(2a)n!



RECCURENCE RELATION FOR THE ... 129

In this form the polynomials may be generated using the recurrence for-
mula

(n+1)C, +1(:::) =2(n+ a)zC{N(z) — (n + 20 — 1)C{(z) n=1,2,3,..

starting from C((,a)(z) =1 and Cga)(z) = 2az, or obtained from Rodrigue’s
formula

(=1)"T(n + 2a)l(n + 1)

C@)(z) =
() = T @)t at 5

(1- )} Drj(1 - 22"t

where D = — —. Certain values of o correspond to more familiar sets of orthog-

onal polynomlals, the Legendre polynomials are given by Cn%)(z) = Py(z),
the Chebyshev polynomials of the second kind by Cl(z) = Un(z) and the
Chebyshev polynomials of the first kind by

n 1
= = lim =C(®)
Ta(z) = 3 ll_["% aC" (=)
It is to be noted here that the usual powers of z are given by

a_nl o C)
im
2" a—oo a”
which enables one to obtain the Taylor series expansion to y(z).

Further details of the properties of these polynomials may be found in
Abramowitz and Stegun [8]. From the orthogonality of the ultraspherical poly-
nomials, the coefficients a, of (1) takes the form

P TECE @2y (2)

n —

n!l(n + a)l'(a)I'(2a)
Val(n + 2a)l(a + 3) / (1=

In general, it is not possible to evaluate the integral occurring in (2) explic-
itly, and to find a,, recourse has to be made to suitable quadrature technique.

The present method enables one to find these coeflicients directly, provided
that the function y(z) should satisfy a linear differential equation. The solution
of linear differential equations in series of Chebyshev polynomials T, (z) has
been given by Lanczos [9], Clenshaw [10], Fox [11], Morris and Horner [12],
Olaofe [13] and Horner [14]. An extension of Clenshaw’s method into the
complex domain has been given in Doha [7]. The proposed method may also
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be considered as an extension of Elliot’s method into the complex domain,
which consequently yields rational approximation and as a special case the
polynomial one.

The method is described in Sections 2 and 3, and is illustrated by numerical
examples in Section 4, numerical results and comparisons, some concluding
remarks are given in Sections 5 and 6 respectively.

2. Ultraspherical series solution for linear differential equations

Let y(z) satisfy the linear differential equation of order m,

ZP-‘(?—‘)D‘y(x) = q(),  pm(2)#0 3)

where ¢(z) and pi(z), i = 0,1,2,..m are functions in z, and, in addition,
let y(z) be a function defined in [-1,1] which has the uniformly convergent
expansion

y(z) = ) anCi(z) (4)
n=0

where the coefficients a, are to be determined. Now assume that the kth
derivative can be expanded in a uniformly convergent series

¥y ()= aC(z)  k=0,1,2,.,m (5)

{ n=0

The method of determining the coefficients a,, depends basically upon the
following two recurrence relations for the ultraspherical polynomials C,(,a)(:c),

namely
2(n + a)C{*)(z) = D(CLP, (2) - CL7(2)) (6)
and  2(n+a)zC{(z) = (n + 1)C{Pi(2) + (n + 20 - 1)C{y(2) (7)

both of which are valid for n > 1. In view of the formulas (4) and (6) we find
that

(k+1) S+

2a®) = In-1  __Gnh1
@n n+a—-1 n+a+l nzl (8)
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We define a related set of coefficients bs.k) by writing
al®) = (n + a)bF) n>0, £=0,1,2,....m 9)
and accordingly, equation (8) takes the form

2(n + a)b(®) = p{AD _ pAD n>1 (10)

Again, let C,(y) denote the coefficient of C,(.")(:z:) in the expansion of y,
then from the recurrence relation (7) we see that

Calew) = 23201 + 7(mbass] 121
where B(n) = { nta Z i g i Y(n)=2-p6(n)

In what follows, a generalization of the previous relation is needed. Define
for an arbitrary function p of the variable n

pr(n)=p(n+1), p (n)=p(n-1)

By induction, one finds

k .
Cn(:!:ky) = n;aZ/\kj(n)bn_k+2j n,k>0 (11)
i=0
where
Mj(n) = (5), @=0; Aoo(n) =1,
B(n)Ax_1,0(n) j=0
Akj(n) = BNy () +y (N ;oa(n)  1<5<k-1,k2>1
7(")At-1,k-1(") a#0

In Equation (11) we may replace y(z) by y*)(z) provided b, is changed
by 5¥). From (11), the quantities Cn(zy), Cn(2%y), ..., Ca(z™y) can easily be
found, and so in Equation (3) C,(pi(z)D'y) can be written down if p;(z) is a
polynomial in z. In cases where p;(z) ; i =0,1,2,...,m are not polynomials in
z it is sometimes best to replace them by suitable polynomial approximations.

We might have a use for coefficients with negative order, n < 0. If 2a =
m, m a nonnegative integer, then we will take

O L 1<n<m-1
b—"”{bf.k_)m n>m
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while if 2« is not an integer, we take
k
3% =0 n>1

In general boundary conditions on the solution y(z) are given at z = 0
or z = *1. For these points we have

CR(1) = (1" C(-1) = %a-;—n?'a)

If the series (4) and (5) are substituted into the differential Equation (3)
and the result combined with (10) and (11), we obtain relations for the coef-
ficients b$¥) for k = 0,1,2,...,m, for all n. These relations and those obtained
from the boundary conditions are equivalent to an infinite system of linear
equations in the unknowns bs.k). The numerical solution of these equations can
be performed by any of the algorithms described in Wimp [16], or the two well-
known methods described in detail by Clenshaw [10]. These are the method of
recurrence and the iterative method.

The starting point of the method of recurrence is to assume that bs,k) =0
for k=0,1,2,...,m and n > N, where n is some arbitrary positive integer
not known a priori, and to assign arbitrary values to by;). The values of b3
for n = N—-1,N-2,.,0 , may then be obtained from the recurrence
relations. Finally, a multiplying factor is determined so that the initial or
boundary conditions are fulfilled. It may happen that the recurrence method
yields by without making use of any equations near n = 0. In order that the
remaining equations be satisfied, the recurrence process is repeated as often as
required with different values of b%‘). An appropriate linear combination of the
trial solutions gives the required solution. The precision of results obtained by
this method may be increased by taking a larger value of N. If, however, the
selected N is larger than that required to achieve the desired precision, little
effort need be wasted.

The iterative method starts with some initial guess for the b, which satis-
fies the boundary conditions. From these values (10) can be used to compute

b(k), 1 < k € m. These values can be used to compute a new b, from the
recurrence relations, again satisfying the boundary conditions. This proce-
dure is continued until the desired precision is reached. Such schemes often do
not converge, or converge slowly. Since the recurrence method is often quite
rapidly convergent, the iterative method is perhaps most useful in correcting
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small errors due to rounding which arise in the application of the recurrence
method.

3. Extension of the method in the complex domain

To extend the method into the complex domain we consider instead the
function y(zz) = R(")(z, z) , where z is the independent variable, -1 < z <1,
and z is regarded as a parameter which may take any real or complex values.
The function R(®)(z, z) satisfies the differential equation

Zp.(zz)d‘R (z,2) = q(zz) (12)

= 2'dz}
Assuming that R®)(z,z) = E an(2)CL)(2) (13)
n—O

and using Clenshaw’s method described in the previous section, the coefficients
an(2) can be found so that the preceding differential equation (12) is satisfied.
If, for example, the function y(z) satisfies the initial condition y(0) = 1, then
we get

oo
() = Y aa(2)C5V(0)
n=0
with this 7(z) and with z = 1, we find that

(@5 1) = o) = Lm0 @n(2)CE(1)
R®)(z,1) = y(2) S o (00) (14)

actually we do not work with infinite sums, but we start with a finite sum, say
RS\‘,’)(z, z), for y(zz) in the form

N
y(zz) ~ R (z,2) = % > an(2)CEV(2) (15)
n=0

where the multiplying factor 71;5 is resulting from the satisfaction of an ini-
tial condition. Finally, putting £ = 1 in (15) yields a finite rational function
Rgg)(z, 1) = Yn(2), say, which approximates y(2) for any real or complex values
of z, |z| < 1.

It is worth to be mentioned that, if we put z = 1 in (13) and (15) then
we get the series expansion and the usual polynomial approximaton for the
function y(z) respectively.



134 E. H. DOHA

Since there is no easy way to estimate analytically the error in a rational
approximation derived by the method explained above. Because of this, proba-
bly the best way to investigate the accuracy of an approximation is to tabulate
and inspect the absolute error function of the approximation for selected argu-
ments. It is appropriate at this point to define the quantity

EQ = sup  1RY(2,1) - y(2)]
|zI<1

to denote the maximum absolute error associated with the rational approxima-
tion to y(z) obtained from ci.

4. Numerical examples

Example 1
Consider the solution of equation

zD?y+ Dy+16zy=0 ; y(0)=1, 3 (0)=0 (16)
in the range 0 < z < 1. This corresponds to the solution of Bessel’s equation

for Jo(4z).

Inspection of (16) and the boundary conditions shows that the solution is
an even function of z. Let z — zz , R(®)(z,z) = Y(2z),and -1 < z < 1.

Then Equation (16) takes form
dzR(“)(z z) dR("’)(z z) 2
J (o) =
122 Iz +162°zR\*/(2,2) =0

(@)
R)(z,0)=1 |, _dR%O_) =0 (17)

Also, let R(*)(z,z) be given by (13). Comparing the coefficients of C,(,a)(z) in
the expansion of the terms of Equation (17), and making use of (11), it can
easily be shown that

nb(z)l +(n+ 2a)b$,2+)_l +2(n 4 @)b{) 4 162%[nbn_1 + (n + 20)bps1] = 0
(18)
repeated use of (10) enables one to put (18) in the form

bnoa = T 1)(:+ T+ 20+ D(n+ @ = Dbaya — 2a(n + )b

_(ata-1

822(n— 1) Fye e (Ul 2a)b£:l+)1 + "b(l)ll (19)
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This and the equation

bel—)l = bf.lll +2(n + a)b, (20)

can be used alternatively to get a rational approximate solution for any value
of a, a> —%. The complete solution for the case @ = 0 has been given in
detail in Doha [7].

In the following we consider the two important cases a = % anda =1,
which are corresponding to the expansion in Legendre polynomials P,(z) and
Chebyshev polynomials of the second kind Uy, (z).

Taking byo = 10 (i.e. N =10), withbja =byq = ... = b)) = (¥ = ... = 0,
and rounding the coefficients of the powers of z in the other coefficients as they
are calculated, we obtain the trial solutions shown in Table 1. We find that
when these trial solutions have been computed, all equations (19) and (20) for
a= % and a = 1 have been satisfied to a certain accuracy. Thus , only the

condition RE:)(::, 0) = 1 remains to be satisfied. This condition gives for & = }

1(2) = 3 am(x)CSP(0)

n=0

where the a’s coefficients are given in Table 1. With this y(z) and with z =1,
we get the sought-for rational approximation in the form

(2,1) = 1 —3.617382% + 2.551432* — 0.561592° + 0.0403528 — 0.000692°
*77 714 0.3826222 + 0.0819224 + 0.013382% + 0.0019628 + 0.0003121°
(21)

Ry

and the corresponding polynomials approximation as

R (1, 2) = 0.25620 Po(z) — 1.07057P3(z) + 0.48785P4(z) — 0.07638Ps(z)
+ 0.00599 Ps(z) — 0.00027 Pyo(z) (22)

For the case a = 1, we get the rational and polynomial approximations
as

1 —3.6365222 + 2.61931z* — 0.605622° + 0.0475428 — 0.0010521°
1+0.3634822 + 0.073222% + 0.011132% + 0.0016128 + 0.0002421°
(23)

R(lt))(z) )=

and
Rﬂ,)(l, z) = 0.38274Up(z) — 0.45707U>(z) + 0.14110U4(z) — 0.01784Us(z)
+ 0.00120Us(z) — 0.00005U,0(z) (24)
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For the sake of comparison, it is worthy to write down the rational and
polynomial approximations obtained from Chebyshev polynomials T,(z)
(o = 0); these are given respectively by (see, Doha [7]) :

1 — 3.6000022 + 2.49000z* — 0.522222% + 0.0335428 — 0.0004221°
1 + 0.40000z2 4 0.0900024 + 0.0155625 + 0.0024328 + 0.0004221°
(25)

R(I((J))(zv 1) =

and
R{®(1,z) = 0.05014Ty(z) — 0.66526Tx(z) + 0.24898T4(z) — 0.033240Ts(z)
+0.00230Tx(z) — 0.00009T}o(z) (26)

Evaluation of Jo(4z) based on rational approximations formulae (21), (23)
and (25) are given in Table 2 compared with the exact values of this function.
The exact values were evaluated by taking the sum of the first twentyfive terms
of the power series expansion of that function. This Table shows that all three

of them are essentially of the same accuracy, but R(lg)(z, 1) is better near the

ends of the interval [-1,1], while R(I%)(z, 1) is the best near the middle of that
interval.

Example 2

It is well-known that rational approximations to e~%, z € [—1, 1] arise quite
naturally in the numerical solution of heat conduction problems and in the
study of numerical methods for ordinary differential equations, see, Cody, Mei-
nardus, and Varga [17]. This function satisfies the differential equation

(D+1)y=0, y(0)=1 (27)

If R)(z,z) = y(zz) , z €[-1,1], then (27) takes the form

dR(a)(Z,l) + ZR(G)(Z,I) =0, R(a)(Z,O) =1

dr
Let R(®)(z,z) be given by (13). Comparing the coefficients of C,(,a)(:c) in the
expansion of the terms of the preceding differential equation, we find af) =
= —za,. This equation and Equation (20) can be used to compute b, and
hence a,,. Since the equations are homogeneous the values of a, have to be
substituted in Equation (15) to satisfy the initial condition RS:,’)(z,O) =1,

which in turn gives
N

¥(2) =) aa(2)CE(0)

n=0
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In Table 3, we give the rational approximations for e=* in [-1,1], for a =
0,3 and 1;; N = 2(2)10. Table 4 also contains the explicit values of ES:)
corresponding to each approximation. In table 5, we give the corresponding
polynomial approximations to e~%, z € [-1,1], for a = 0,% and 1; N=2
(2) 10.

5. Numerical results and comparisons

From the results of Examples 1 and 2, it is not difficult to show that
the polynomial approximation obtained for @ = 0 is better than those for
a = % and 1; meanwhile the approximation for a = % is also better than
that of @ = 1. This certifying that the terms of the Chebyshev expansion of
the first kind are asymptotically smaller in maximum absolute value than the

corresponding terms of any other ultraspherical expansion.

Results of Table 4, show that E&?) < ESV%) < El(\;), 2< N <10. Thisis
also certifying that the rational approximation obtained from Chebyshev poly-
nomials of first kind (a = 0) is the best of any other rational approximations
obtained from ultraspherical polynomials correspond to a > 0.

Some comparison with the well-known technique of Padé would be appro-
priate. Now the (m, n)-th degree Padé approximant to e~* is given by Braess

(18]

Pm(2)
Qn(2)

e’ ~ Rmn(z) =

where
P,,.(z):/ (t+z)"‘t"e"dtQ,,(z)=/ (t = 2)"tme"Mdt.
0 0

After performing these integrals we get

ET:O (T) (n+ ")!"m_’c
Yheo (P (m + k)(=2)"7*

Now the rational approximations given in Table 3 compare favorably with
the Pade’ approximants obtained from (28) expressible in a similar form; for

example the rational functions R(lt) and Rjo,10(z) were compared, and it is
found that R(l},) is better than Rj¢,10(z). Evaluation of e™*, z = 0(0.1)1, based

on rational approximations functions Rg%)(z), RS?(:),R%)(Z) and Rjo,10(2)
are given in Table 6 compared with the exact values of this function.

e’ ~ Rpn(2) =

(28)
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6. Conclusion

In this paper we have described a method which enables us to find simul-
taneously the rational and - as a special case - polynomial approximations for
arbitrary function f(z) expanded in an infinite series of ultraspherical polyno-
mials C,(,a)(z). The coefficients of expansion may be obtained to any degree of
accuracy. The function f(z) is assumed to satisfy some linear differential equa-
tion with associated initial or boundary conditions. The differential equation
can then be solved directly to give the unknown coefficients of expansion.

The rational approximation to be obtained by this method can be consid-
ered as an extension of Elliott’s method [15] and Doha’s method [7] into the
complex domain. It is of fundamental importance to note that the polynomial
approximation for f(z) is obtained directly from its rational one, R(")(z,z),
for any a > -% simply by putting the parameter z equal to unity.
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TABLE 1

Table 1*. Computation of Trial solution for Example 1 in Terms of a,
using Legendre and Chebyshev Polynomials respectively.

n Trial 1 22 24 28 22 |29 a,(1)
le—nan(Z)
0 1%, -266313 [+253187 |-99003.5 |+11642.5-496 |-8 [4+0.256198
-1586340 [+1009740-332721 |+30524 |-1320]-54/+0.382736
9 28a, +710167.5-336990 |+50717.5-1925 +37.5% |-1.070566
+1586340 [-613155 |+80286 |-2427 +72 -0.457070
4 2Say -243486 |+54405 |[-3213 -13.5 +0.487854
-396585 |476175 [-4035 |-35 +0.141098
6 tag +32792.5 |-2756 +71.5 -0.076379
+44065 [-5122 +91 -0.017843
8 22ag -2354.5 |[-8.5 +0.005994
-2754 -18 +0.001205
10 810 +105 -0.000266
+110 -0.000048

Note. z*ag = 32792.5 — 275622 + 71.52*

* In each row, the first line gives the coefficients correspond to using Legen-
dre polynomials, while the second line gives those correspond to using Cheby-
shev polynomials of the second kind.
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TABLE 2.

Evaluation of Jo(4z) based on Rational Approximations

Rg%)(z, 1), R?o(z, 1), R{)(z,1) compared with the exact values.

|z | B9 | Rhe | RDE1) |

Exact

0.0| 1.000000000

1.000000000

1.000000000

1.000000000

0.1| 0.960398227

0.960398256

0.960398227

0.960398227

0.2 | 0.846287353

0.846287463

0.846287351

0.846287353

0.3| 0.671132744

0.671132967

0.671132702

0.671132744

0.4 0.455402169

0.455402511

0.455401767

0.455402168

0.5] 0.223890793

0.223891236

0.223888549

0.223890779

0.6 0.002507756

0.002508254

0.002498785

0.002507683

0.7]-0.185035873

-0.185035372

-0.185064389

-0.185036033

0.8 [-0.320188549

-0.320187900

-0.320265318

-0.320188170

0.9{-0.391773852

-0.391771880

-0.391956217

-0.391768984

1.01-0.397173242

-0.397165636

-0.397566534

-0.397149810

The Rational Approximations for e~ in [-1,1], for a = 0, 1

N =2(2)10.

€

-2z

TABLE 3.

N .
iz Piz’

Eio izt ,

’2

and 1;

| o

Il
(X [

| a=0
I

HE gi

I pi

g [

[ V]

N =

0 8
1 -8
2 3

8
0.0
-1

10
-10
4

10
0.0
-1

192
-192
84
-20
2.5

W = O

192
0.0
-12
0.0
0.5

126
-126
56
-14

126
0.0
-7
0.0

0.25

1920
-1920
864
-224
35

1920
0.0
-96
0.0
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Table 3 - continued

L] Pi | & | pi | i | pi | @
| N=6 |
0 23040 23040 67567.5 67567.5 80640 80640
1 -23040 0.0 -67567.5 0.0 -80640 0.0
2 10560 -960 31185 -2598.75 37440 -2880
3 -2880 0.0 -8662.5 0.0 -10560 0.0
4 504 24 1575 59.0625 1980 60
5 -56 0.0 -189 0.0 -252 0.0
6 3.5 -0.5 14 -1.09375 21 -1
| N=8 |
0| 5160960 | 5160960 | 17229712.5|17229712.5| 92897280 |92897280
1| -5160960 0.0 -17229712.5 0.0 -92897280 0.0
2| 2419200 -161280 8108100 | -506756.25 | 43868160 |-2580480
3| -698880 0.0 -2364862.5 0.0 -12902400 0.0
4 137280 2880 472972.5 | 8445.9375 2620800 40320
5 -19008 0.0 -67567.5 0.0 -384384 0.0
6 1848 -40 6930 -108.28125 41184 -480
7 -120 0.0 -495 0.0 -3168 0.0
8 4.5 0.5 22.5 1.230473 165 5
| N=10 |
0 1857945600 | 1857945600 6874655288 6874655288 40874803200 |40874803200
1 1857945600, 0.0 -6874655288 0.0 40874803200 0.0
2 882524160 -46448640 3273645376 -163682269 195084288C0 -928972800
3 1-263208960 0.0 1982093612.5 0.0 -5883494400 0.0
4| 54835200 | 645120 | 206756550 |2153714.063| 1250242560 | 11612160
5| -8386560 0.0 -32162130 0.0 -197406720 0.0
6 960960 -6720 3783780 }21114.84375 23761920 | -107520
7 -82368 0.0 -337837.5 0.0 -2196480 0.0
8 5148 60 22522.5 173.37474 154440 840
9 -220 0.0 -1072.5 0.0 -8008 0.0
10 5.5 -0.5 33 -1.353514 286 -6
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Values of Eﬁ') for a=0

1

'

TABLE 4.

and 1; N =2(2)10.

V| B

EP

26.1x10"?
4|83x10"*
6|35x10¢
814x10°8
10(2.6 x 10-11

70x 102
1.3 x 10°3
7.8 x 10~
3.0x10-8
3.0 x 10-10

TABLE 5.

The Polynomial Approximations for e=* in [-1,1], for @ = 0,% and 1;

N = 2(2)10.
N
e =Y a;C{*)(z)
=0
| a=0 | a= % I a=1
| i | a; | a; |
| N=2
0 1.285714286 | 1.185185185 | 1.136363636
1] -0.444444444 | -1.111111111 | -0.545454545
2| 0.111111111 | 0.370370370 | 0.136363636
| N=4
0] 1.265927978 | 1.175122292 | 1.180268199
1] -1.130193906 | -1.103563941 | -0.542966612
2| 0.271468144 | 0.357791754 | 0.133004926
3| -0.044321329 | -0.070440252 | -0.021893815
4| 0.005540166 | 0.010062893 | 0.002736727
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Table 5 - continued

a;

a;

a;

- N=6
0] 1.266066460 | 1.175122292 | 1.130318431
1] -1.130318728 | -1.103638649 | -0.542990786
2| 0.271495464 | 0.357814456 | 0.133010576
3| -0.044336870 | -0.070455654 | -0.021896966
4| 0.005474246 | 0.009965134 | 0.002714633
5| -0.000542900 | -0.001099548 | -0.000269857
6 | 0.000045242 | 0.000099959 | 0.000022488
I N=38
0| 1.266065876 | 1.175201193 | 1.130318207
1] -1.130318207 | -1.103638323 | -0.542990678
2| 0.271495339 | 0.357814350 | 0.133010550
31 -0.044336849 | -0.070455634 | -0.021896962
4| 0.005474240 | 0.009965128 | 0.002714632
51 -0.000542926 | -0.001099586 | -0.000269864
6 | 0.000044977 | 0.000099454 | 0.000022389
7| -0.000003198 | -0.000007620 | -0.000001594
8| 0.000000199 | 0.000000508 | 0.000000010
| N=10
0| 1.266065878 1.175201194 | 1.303182080
1] -1.130318208 | -1.103638324 | -0.542990679
2| 0.271495340 | 0.357814351 | 0.133010550
3| -0.044336850 | -0.070455634 | -0.021896962
4| 0.005474240 | 0.009965128 | 0.002714632
5{ -0.000542926 | -0.001099586 | -0.000269864
6| 0.000044977 | -0.000099454 | 0.000022389
7| -0.000003198 | -0.000007620 | -0.000001594
8| 0.000000199 | 0.000000506 | 0.000000099
9 | -0.000000001 | -0.000000030 | -0.000000006
10| 0.000000000 | 0.000000002 | 0.000000000




RECCURENCE RELATION FOR THE ...

145

TABLE 6.

Evaluation of e~? based on Rational Approximations R(l?,)(z, 1),
1), Pade’Approximant Rjo,10(2) Compared with the Exact values.

(= l,-;—,

|2 [ BOG D | R | RO | Rioo(e) |

Exact

0.0

1.0000000000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

0.1

0.9048374180

0.9048374180

0.9048374182

0.9048374086

0.9048374180

0.2

0.8187307532

0.8187307531

0.8187307531

0.8187307480

0.8187307531

0.3

0.7408182207

0.7408182207

0.7408182206

0.7408182182

0.7408182207

0.4

0.6703200460

0.6703200461

0.6703200461

0.6703200499

0.6703200460

0.5

0.6065306597

0.6065306597

0.6065306598

0.6065306526

0.6065306597

0.6

0.5488116361

0.5488116361

0.5488116360

0.5488116337

0.5488116361

0.7

0.4965853038

0.4965853039

0.4965853038

0.4965852976

0.4965853038

0.8

0.4493289641

0.4493289643

0.4493289641

0.4493289624

0.4493289641

0.9

0.4065696597

0.4065696600

0.4065696598

0.4065696559

0.4065696597

1.0

0.3678794412

0.3678794415

0.3678794414

0.3678794373

0.3678794412









