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ITERATIONS CONVERGING FASTER
THAN NEWTON’S METHOD TO THE
SOLUTIONS OF NONLINEAR
EQUATIONS IN BANACH SPACE
IOANNIS K. ARGYROS
Introduction.
Consider the equation
F(z)=0 (1)
where F is nonlinear operator mapping a subset E of a normed space X into a
normed space Z. We assume that F is k-times Frechet-differentiable on E [4],

[8]. Suppose that an approximation z, to a solution z* of equation (1) by the
equation

F(zn)+ F'(zn)(z — zn)+
%F"(z")(z —z)2 ...+ %F(k)(zn)(:x —z,)¥ =0, 2)
where FU)(z,),j = 1,2,...,k are j-linear operators corresponding to the j-th

Frechet-derivative of F at z,, [7], [8], n =0,1,2....
For fixed z,,2z¢E,n =0,1,2,..., define the linear operators on E by

Ln(2)(z) = F(ea)(&) + 5 F*(2a)(z = 2a)() + ...+
+7c1—!F(’=)(z,,)(z —za)(z), n=0,1,2,.... 3)
Using (3), (2) can equivalently be written as

F(zn)+ Lnk(z)(z — 24) =0, n=0,1,2,.... (4)

Moreover, if we assume that the linear operators L, x(z) are invertible on
E, (4) becomes

T = Tn,k(z) (5)
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where T,, ; are nonlinear operators defined on E by

Tok(2) = 2p — Lo x(z)" F(zs), n=0,1,2,.... (6)

Equation (5) suggests that the approximation z, 41 can be found implicitly
using the iteration

Xnt1 = Tn i (2n41), n=0,1,2,.... M

Note that for £k = 1 the above iteration becomes explicit and reduces to
the Newton-Kantorovich iteration for solving (1) [4], [6]-

Assuming that the linear operator L, ;(zo) has a bounded inverse on some
D C E, the Newton-Kantorovich theorem ensures that if

a = a(zg) = 2bl || Ln,1(20) ™ F(20) |I< 1, (8)
r = r(zo) = %(1 —ViTa), )

where [ is the Lipschitz constant of L, ; on D C E and

b= b(zo) =|| Ln1(z0)~" || .

Then equation (1) has a solution
z*e¢B(zo,r) = {zeX |||z —zo ||< T} C D
which is a unique solution of (1) in the open ball B(zo, ) with radius
1
F=7(z0) = ﬁ(l+\/1—a). (10)
Moreover, iteration (7), for k = 1 converges to z* quadratically. That is,

| Zns1 — 2" |= O(| 2o — 2* ||?), n=0,1,2,.... (11)

Suppose that there exists £*¢F which is obtained as the limit of the iter-
ation (7) as n — oo and k is fixed. Then by (7)

F(z*) = F(lim 2n41) =0, (12)

that is z*, so obtained is a solution of the equation (1).
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Here we provide sufficient conditions for the convergence of iteration (7)
to a solution z* of equation (1). We also show that if F' is (k + 1)-times
Frechet-differentiable, then the following estimate holds

| Zng1 =2 ||I=0 (|| zn — z* ||**!), n=0,1,2,.... (13)

The above result improves (11) for k > 1. However, iteration (7) becomes
implicit. More precisely, (5) becomes a polynomial equation of degree k on
E. Polynomial equations have already been studied in [1], [2], [6], [7] and the
references there. In fact, the continued fraction technique [3], the contraction
mapping principle with perturbations [1], [5] and the Newton- Kantorovich
theorem (4], [6] are some of the techniques that have been applied for the
solution of (5).

Due to the particular properties of polynomials, equation (5) is, in general,
easier to handle than equation (1), especially on finite dimensional spaces.
There are problems where the desired error tolerance € > 0 is such that the
number of iterations required by (7) for £ = 1 due to (11) is very large. It is
in those cases where the solution of (5) will reduce the number of iterations
required to achieve the same accuracy € due to (13).

The evaluation of the iterate z,41 in (7) will itself require an iteration of
the form

Tn4l,m4l = n,k(zn-{-l,m)y m= 0) 1’2) s (14)

for fixed n and some initial guess z,41,0.

Because of rounding or discretization error in the evaluation of T, &, an

approximate sequence z,4+1,m is produced in place of the exact sequence z,, 41,m.
That is

Zn4l,m4+l = Tn,k(zn+1,m); m= 0: L,2,..., (15)

where the T,,,,, are related with the T, x, n=0,1,2,....

In [4, 12.2.1] it was proved that if the operators T}, ; are all contractions
on some closed set D; C E and {zp41,m} C D, then for z,41,0¢Dp with
Tnk(Do) C Do C D iteration (14) converges to a unique fixed point zj, ., of
Tn,k in Do.

Moreover,

lim z =z
s 00 n+l,m n+1

if and only ifﬂ}_i_{r;o | Tn k(2n41,m) = Zn41,ms1 ||= 0 (16)
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To illustrate the procedures described above a simple example is provided
when X = C, the set of complex numbers.

I. Main results.

From now on we assume that X =Y is a Banach space and state the main
result.

Theorem. Let F : E C X — X be a nonlinear operator which is (k + 1)-
times Frechet-differentiable on E. Assume that the linear operators Ly k(Zn41)
are invertible with bounded inverse on some closed ball B* C E such that
{zn}C B*, n=0,1,2,....

Set,

| Lnk(zn+1)™! IS en <, (17)
and

(ki 1)! max || FED(Z) ||<dn <d, n=0,1,2... (18)
. zeB*

for some ¢, ¢, d, dn > 0 guaranteed to exist by the hypotheses on L, ¢(zZn41), F
and the standard estimate (given in [4] for example) for (18).
Then if

0<ed<1 (19)

the following are true:

(i) the iteration {z,} given by (7) converges to a solution z*¢B* of equation
(1);

(ii) moreover

| Zn41 — z* ||= 0(|| 2o — z* ||**!), n=0,1,2,....

Proof. We have by (7)

| 2n41 = zn 1=l Ln t(2n41) ™ F(zn) |
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<cl|| F(zn) = F(zn-1) = F(zn-1)(zn — zn-1)—
R %F(")(zn_l)(zn —zns )|

1 1
- (k+1) (= . _ k+1
< o maE | FEDE -l 2 = 2t | -
< cd|| 2n — znoy [IFH
< (cd)(cd)**! || a1 = 2n-2 ||
< (ed)H [l 21— 2o ] .
Also, p=12,3...
| Zntp — Zn [I<Il Zatp — Znse-1) | + | Znt(p-1) — 2a |l - (21)
Now,
| Zn4p = Znt(p-1) | £ (cd) [| Zns(p-1) = Tnt(p-2) “’Hl
< (Cd)(H-l)(pml)-*'1 | 2n41 — zn “k+1:
(22)
| Zn+(p-1) = Zn 1=l (Zat(p-1) = Tns(p-2))+
H(Zn4(p-2) ~ Tnt(p-3)) + -+ (Tng1 — zn) ||
< [(cd)EADE=D+1 4 (cg)(k+1(P=3)+14
oot Y zngr —za || - (23)
The inequality (21) because of (20), and (23) becomes
1 — (cd)(k+1)p+1
2t = 2a s [F ST ® 0 2z (20)

1—cd

Letting n, p — oo in(24) and using (19) we obtain that the sequence {z,} is
a Cauchy sequence in a Banach space X and as such it converges to some z*¢B*
which, by the discussion made in the introduction, is a solution of equation (1).

This proves (i). The second part of the theorem is immediate from (22)
and the inequality

(cd)("“)"

[| zn — z* ”S—l—_—zi—-"zl—::o”, n=0,1,2,... (25)
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which follows from (24) by lettihg p — 0o. That completes the proof of the
theorem.

Note that we can produce the modified” version of (7) by introducing the
iteration

Zn41 = Tak(Z0)F(Zn), n=0,1,2... for some ZocE

II. Examples.

Let X = C the set of complex numbers equipped with the usual Euclidean
norm ||. Then (X, ||) becomes a Banach space. Consider the equation

F(z)=2-522+7z-3=0. (26)
Let D = B(.7,1.2),z¢ = .7. The linear operators L, 2(z) become

Ly 2(2)(z) = (322 — 10z, + T)z + (32, — 5)(2 — )z
and the Newton-Kantorovich method for (26) gives

To = N

r; = .840816
z2 = 917578
z3 = .957989
z4 = 978781
zs = .989335
ze = .994653
z7 = .997323
zg = .998661
zg = .99933
Z10 = 999665
)1 = .999832
z12 = .999916
z13 = .999958
T14 = .999979
z15 = .999989
ZTi6 = .999995
zy7 = .999998

Zz18 = 1.
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The Newton-Kantorovich theorem guarantees the existence of a solution
of (26) only after the 14** iterate, since it can then easily be checked that

a = a(z14) = 9981914 < 1,1 = 4.000126.

It is well known, however, that Newton-Kantorovich can sometimes converge
even if 2o ¢ B(z14,7(Z14)).

We can now observe that for zo = .7,k = 2 iteration (7) becomes a
quadratic equation for every n,n=1,2,3....

For n =0, (7) gives

~2.92z2 + 5.53z; — 3.266 = 0

with solutions

s1 = .9534482 £ .465863i.
To apply the iteration (7) for n = 1,2... we choose
Zm = zm = Rel(sm), m=1,2....
That is, for m = 0, z; = Rel(s;) = .9534482 and (7) becomes

—2.139655422 + 4.27280982, — 2.2282236 = 0

with solutions

s2 = .9984808 + .21078351.

The process will be terminated when m = 4 and the results can be tabu-
lated as follows:

zZ0 = 7

z1 = .9534482
22 = .9984808
z3 = .99999982
24 = 1.

We now observe that starting from the same initial guess, iteration (7) for
k = 2 requires almost the one fourth of the number of iterations required from
the same iteration (7) for k = 1 to obtain the solution z* = 1 of equation (26).
Moreover, one can easily check that (16) is satisfied.
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Finally, it is interesting to note that condition (19) is violated since,

and

Ch 00 a8 N —00

d, =1, n=0,12,....

However, the sequence {2,},n = 0,1,2, ... converges to the solution z* = 1
of equation (26).
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