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WALD’S IDENTITY, BLACKWELL’S THEOREM,
AND GUT AND JANSON’S THEOREM USING
MARTINGALE TECHNIQUES

N.L. BASSILY* AND S. ISHAK

Abstract The purpose of the present paper is to give different proofs for the well
known Wald’s identity using mainly martingale techniques. Two proofs for Blackwell’s
theorem [1] are given, the first one is due to Blackwell himself with some modifications
using the strong law of large numbers, whereas the second proof is based on martingale
techiques using a new result on the regularity (uniform integrability) of the stopped

non-negative submartingales. This result is a generalization of a well known result

of Neveu [2] for the regularity of the stopped martingales. Also, some interesting
examples and remarks are presented. Moreover, the Gut and Janson’s theorem [3] is
reproduced and essentially simplified.

1. Introduction

Let Y;,Y,,... be a sequence of independent and identically distributed
(i.i.d.) random variables defined on a probability space (? ,F,P), and let v
be a stopping time which is defined with respect to the sequence of o-fields
F, = U(Yl,Yz,...,Yﬂ),n > 1.

Let So =0and S, = Y1+ Y2+ ...4Y,,n > 1, be the ”generalized”
random walk. Then, the corresponding stopped random walk is Sp = 0 and
Syan,n=1,2,..., where a A b = min(a, d) for any two real numbers a and b.

If v is finite a.s., then the limit

lim Syan =S,
n—+oo

exists and finite a.s., except the event {v = 400}, where S, is defined to be 0.
Therefore, S, can be written in the following form:

S, =) Six(v=i)=)_ Yix(+oo > v > i),
i=1

i=1

where x(A) stands for the indicator of the event A.
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Since Y; and x(v > %) are independent, and P(v = +o0) = 0, it follows
that Y; and x(4+o00 > v > 1) are also independent and S,An can be written as:

Svan = ZSiX(V = ‘) = 2KX(+00 >v2> 1)

=1 i=1

Throughout the present paper we suppose that P(v < +o00) = 1.
2. Wald’s Identity

In this section we present two different proofs for the famous Wald’s iden-
tity. The first proof is a modified and shortened form for the original proof
given before, whereas the second one could be considered as a new proof and
it mainly depends on martingale techniques.

Theorem 1.
If E(v) and E(Y;) = a are finite, then the stopped random walk Syrn

converges in L! to its a.s. limit S,. As a consequence, we have
E(S)) = aE(v).
This is known as the identity of Wald.

The First Proof:

We have

E(1S, = Suan )= E(] ) Yix(+oo>v 2 i)|) <
i=n+l

Y E(Yi | x(+o0> v 2i) =
i=n+1

Y. E(1Yi)P(+o0 > v > i) =
t=n+41

E(vi]) Y P(v2>i).

t=n+1

IA

(o]
This tends to 0 as n — +oo since E(v) = Y P(v > i) < +00. Here, we have

i=1
used the independence of Y; and x(+o00 > v > i). This is a consequence of the
fact that P(v = +00) = 0 and that Y; and x(v > i) are independent.
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Finally, since

E(Suan) = Y _E(Y)P(v2i)=a)_ P(v>1i),
=1 i=1

we see by what we have proved above that
E(S) = nETm E(Suan) = aE(v).

This proves the assertion.

For the second proof we need the following martingale theoretic result
which was proved by J. Neveu [2].

Let (X, Fy),n > 1, be an integrable martingale with the differences
d = X1,di = X; — Xi—1,i = 2,3,..., such that for each i > 2 we have
E(| di || Fi-1) < C as., where C > 0 is a constant. Consider the stopped

martingale (X,an, Fn), where v is a stopping time such that E(v) is finite.
The a.s. limit of the stopped martingale is:

X, = Zka(u =k)= Ede(+°° >v>k).

k=1 k=1

In both representations we define the a.s. limit X, to be equal to 0 on the
event {v = 400}, which has 0 probability. We also have

n
Xvan = Ede('f'OO >v>k).
k=1

From the point of view of integration the terms d;x(4+00 > v > 1) behave in
the same manner as the random variables d;x(v > i), i=1,2,...
Lemma 1.

The stopped martingale X, A, converges in L; to its a.s. limit X, . Espe-
cially, it follows that E(X,) = E(X;).
Proof.
We have
E(' Xy — Xvan |) =

=E( ) dix(+oo>v>i) )< E( Y |di|x(v2i) =
i=n+1 t=n+l
= Y E(E(di|l Fim)x(v29)<C Y P(v2i).

i=n+1 i=n+1



78 N.L. BASSILY* AND S. ISHAK

Here, we have used the assumption that E(| d; || F;—1) < C a.s. for i > 2 and
that {v > i}eF;_;. Now, if n — 400 the righthand side tends to 0, since we

(o)
supposed that E(v) = Z P(v > i) < 4+00. Consequently, X,nn, — X, in L;

as n — 400. Especiallyt,zi't.' follows that
E(Xv) = nBToo E(Xv/\n) = E(Xl))

since (Xyan, Fn) is a martingale.
This proves the assertion of the lemma.

The second proof of Theorem 1: We suppose that a = E(Y;) and E(v)
are finite. Consider the sequence X,, = S, — an, which is a martingale with
respect to the sequence F, = o(Y1,...,Ys),n > 1, of o-fields. The sequence
(Svan — a(v A n), Fp,) is then the martingale (S, — an, Fy,) stopped at v. We
have

Suan —a(v An) =Y (Y — a)x(+00 > v > i)

i=1

where the differences of the original martingale are Y; — a,i > 1. For (X,,, F,,)
the assumptions of Lemma 1 are fulfilled. In fact, for i > 2, we have

E(Yi—a||Fi-)=E(|Yi—a|)=E(|Y1-a])=C,

which is finite and independent of ¢ because the random variables Y; — a are
identically distributed. Here, again we used the fact that Y; —a and F;_,,i > 2,
are independent. The limit of Syan — a(v A n) is thus

S, —av= Z(Y. —a)x(+o0 > v > 1)

i=1
in the sense of the L; convergence and a.s. convergence.
Consequently,

E(S, —av) = E(S; —a) = E(Y; —a) = 0.

Since E(S,) is finite, from the last equality, we obtain E(S,) = aE(v).
This proves the assertion.
Remarks.

(a) Wald’s identity remains valid in the case when a = E(Y;) = oo and
E(v) < 4+00. Namely, in this case we have
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E(S)) = o0 = aE(v).
To prove this relation remark that the series

00

Yi|+.4 Y =) 1Y | x(+00 > v > )

i=1

absolutely converges. Thus,

S, = ist(+°° >v2>i)= f:(y.-+ = (Y7 x(+o0 > v 24)

i=1 i=1

can be written in the form:

[ <] [=°]
Sy = ZY,-*x(+oo> v2 i)—z}’,-'x(+oo> v>i).

1=1 =1

Note that we have supposed that E(v) < +o0o which implies P(v < +00) = 1.
Consider the case when a = E(Y;) = +o00. The other case could be proved
similarly. Then,

B ¥ (oo > v 2 1)) =

i=1
= S E(HP( > i) = E(GHE() = +oo0
i=1

and

EQ_ Y x(+oo>v>i) =

i=1
= S B )P 2 i) = B E() < +oo
i=1

since ¥; = Y;* — Y, and now E(Y;*) = 400, whilst E(Y;") = E(Y;") < 400
and by supposition E(v) < +oo.
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If we suppose that E(S,) is finite then so must be

E(i Y x(+00 > v > i),

i=1

since

B3V x(hoo > v > ) = B(S,) + E(L Y x(4o0 > v 2 1)

1=1 =1

is finite, which is a contradiction. Suppose now that E(S,) = —oo. Then, from

o0 00
Y Yitx(+oo > v 2 i) =8, + 3 Vi x(+00 > v > i)

=1 i=1
and from o
E(E Y x(4+00 > v 2 1)) < 400
i=1

we deduce the validity of

E(i Yt x(+00 > v > 1)) = —o0

i=1

which is again a contradiction. Finally, if we suppose that E(S,) does not
exist, then so is

o0
EQ)_Yi*x(+00 > v > i),
i=1
which is a contradiction. These considerations prove that E(S,) = +oo.
(b) Wald’s identity remains valid also in the case when a = E(Y;) # 0
is finite and E(v) = +00. In [4] this case was considered and conditions were
given to ensure that E(S,) is equal to +00. In section 4 of the present paper

this case will also be considered and more restricted conditions are given to
ensure that E(S,) = oo hold/Blackwell’s Theorem/.

3. Stopping Times Related to a Sequence of i.i.d. Random Variables

To prove Blackwell’s theorem we need to study the stopping times which
are connected with a sequence of i.i.d. random variables.
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The second assertion of this section will help us to prove Blackwell’s the-
orem but at the same time it is interesting in its own right.

Lemma 2.

Let Y;,Y3,... be a sequence of i.i.d. random variables. Consider the o-
fields F, = o(Y1,...,Yn),n = 1,2,... and let v be a stopping time with re-
spect to the sequence {F,}5%,. Then, there is a Borel-measurable function
g: R® — {+00,1,2,...} such that

v = g(Yl,Yg, )

Proof.
Introduce the notation

Y =(11,Ys,..)

and forn = 1,2, ... let Y(®) = (Y3, ..., Yy,).

Since {w : v = n}eF, = o(Y1,...,,Yn), we deduce the existence of a Borel set
B(™) of R" such that

{v=n} = {Y(™eBM™)}.
Denote by B(™:®) the Borel set B(") x R®. Then

{v = n} = {YeB(™™)},

The sets B(":®) n =1,2,... are not necessarily pairwise disjoint. However, for
n # k the event

{w : Y(w)eB(™>®) 0 Bk}

is empty since there is no w for which at the same time v(w) = n and v(w) = k.
Thus if we define

C(m) — g(n,eo) _ U B(k.oo), n=12..
k=1k#n

then these sets are pairwise disjoint and trivially we have

{v=n}= {Y(C("’w)}.
Finally, let
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B(®) = g — | J c(™e),
n=1

Then,
{v = +0} = {YeB(™®)}.

This given, for z = (z1, z2, ...)eR®, let

_Jn if zeC(™m®) n=1,2,..
g(z)_{+oo if zeB(*).

Then, g is trivially a Borel measurable function on (R*®,B(R*)). Also, it
trivially follows that v = g(Y3, Yz, ...), which proves the assertion.

We also need the following very interesting
Theorem 2.

Let Y;,Y>,... be a sequence of ii.d. random variables and let
Fo,=0(1,...,Ya),n=1,2, ..., be the corresponding sequence of o-fields. Let v
be a stopping time with respect to the increasing sequence {Fj,}3%, of o-fields.
Suppose that P(v < +00) = 1. Then

1 . every finite joint distribution of the sequence Y 41, Y, 42, ... is the same
as that of sequence Yi,Y3,... Especially, the elements of the sequence

Y, +1,Y, 42, ... are independent and identically distributed and their dis-

tribution is the same as that of the Y;’s,

2 . the o-fields, o(v) and o (Y, +1, Yo 42, ...) are independent,

3 . furthermore, the o-fields o(Y, ..., Y,) and o(Y, 41, Yo 42, ...) are indepen-
dent.

Proof.

1. Consider P((Yy41,Yv42,..., Yy 41 )eB®) BF)eB(R¥), where B*¥) is a
k-dimensional Borel set. This is equal to

Y P =3,(Yig1, ., Yigr)eB®) =
i=1

= 3" P = )QHBY) = Pl < +00)Q*(B®) = Q4(B®),
=1

where Q is the /common/distribution of the Y;’s and Q¥ denotes the k-th
Cartesian product of the measure Q. Note that {vr = j}e¢ F; and
{(Yi+1, -, Yi4)e B®}ea(Y;41, ..., Yj4x). Further Fj and 0(Yj41, ..., Yj4x) are
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independent. This means that the members of the sequence Y, 41, Y, +2, ... have
the distribition Q and that they are independent.

2. Each element of the o-field o(v) is of the form {veG} where G is an ar-
bitrary subsequence of {4+00,1,2,...}. Consider P(veG, (Y, 41, ..., Yo4r)eB(*)),
where B(¥)eB(RF) is an arbitrary Borel set. We can suppose that G does not
contain the ”index” +o00, because by assumption P(v < +00) = 1. Now

P(VCG) (Yv+1, "')Yv+k)CB(k)) -

= E P(V = j’ (},j+11 ceny },j-}-k)fB(k)) =
jeG

=) P(v=j)P((Yis1, ., Yi4)eBY),
jeG

since {v = j}eF; and Fj = o(Y3,...,Y;) is independent of o(Yj41, ..., Yj4r).
Further, as we proved in part 1 of the present proof,

P((YJ'-O-D S YJ'-H:)CB(k)) = Qk(B(k))!

where Q is the common distribution of the Yi/s and Q* denotes the k-th direct
product. Consequently,

P(veG, (Yy41, '--;Yv+k)€B(k)) =
= Q"(B(k))z Pv=j)= P(VCG)Q"(B("))‘

jeG
Since o(Yy41,Yv42,...) = o U o(Yy41, -, Yo4r)) and the preceding formula

shows that the field U o(Yy41, .-, Yo4k) is independent of o(v), we see that
o(v), and a(Y.,+1,Y,,+2,. .) are independent.

3. Consider P((Yy,...,Y,)eB®) (Y, 41,...,Yoqr)eB®*)), where B(*) is a
Borel set having dimension ». We can consider this probability on the set
{v < +00} since P(v = +00) = 0. We have to show that this is equal to

P((Y1,...,Y,)eB)P((Yy 41, ..., Yypr)eBF).

Now

P((Y3,...,Y,)eB®) (Yo 41, ..., Yoyr)eBF)) =
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o0
=Y P(v=3j,(Y1,..., Y;)eBD, (Yj41, ..., Vi) BX)).
ji=1

Note that {v = j,(Y1,...,Y;)eBU)}eF;, and that

{(Yis1, -, Yisne B®Yeo (Y1, .., Y 4x)

and remark that the o—fields F; and o(Yj41, ..., Yj4+x) are independent. Fur-
ther, P((Yj41, .-, Yj+£)eB®)) = Q*(B™®)) independently of j. Therefore,

P((Y1,...,Y,)eB®) (Y, 41, ..., Yoyr)eBF)) =

= Q¥(B™®) 3 P(v=j,(Y,..,Y;)eBW) = Q¥(B®)P((Yi, ..., Y))eBM).
)

j=1

[e¢]
It follows that o(Y1,...,Y,) and |J ¢(Yy+1,..., Yo+&) are independent.
k_

=1
From this we deduce as above that o(Y7,...,Y,) and o(Y,+1,Y,42,...) are in-
dependent.

This proves the assertion, cf. [5].

4. Sufficient and/or/Necessary Conditions for Conver-
gence in L; (Blackwell’s Theorem)

In this section we present two proofs for Blackwell’s theorem. The first
one is due to Blackwell himself (with some modifications) and uses the strong
law of large numbers,whereas the second proof mainly depends on martingale
setting and on a generalized result of the regularity of the stopped non-negative
submartingales.

Theorem 3.

Let v be an a.s. finite stopping time with respect to the o-fields
Fn = o(11,Y,...,Ys),n > 1. Suppose that E(Y;) = a # 0 and E(S,) are
finite. Then, E(v) is finite, and consequently by Wald’s assertion (Theorem 1)
the stopped random walk S, A,, converges in L; to S, .

Proof.

Without loss of the generality we suppose that E(Y;) = a > 0. Let
vo = 0,v1 = v and consider the random variables Y, 4+, Y, +2,... Now, by The-
orem 2 they are independent and identically distributed/their common distri-
bution is the same as that of the Y;’s/, and let us consider the stopping time

v = g(Yo 41, Yo, 42, ..),
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where g is defined in Lemma 2. Further, consider the sequence Y, 4u,+1,
Yy, 4va+42, ... Since vy +v; is a stopping time and so by Theorem 2 the members
of this sequence are independent and identically distributed, we see that the
random variable

v3 = g(Yo,4va+1, Yo 4va42, -0)

where g is defined by Lemma 2, is again a stopping time which is independent of
v; and v2. Repeat infinitely many times this procedure. Then, by Theorem 2,
the sequence {v;} is an independent sequence of stopping times and by Lemma
2 the v’s are of the same distribution. Also, by Theorem 2 the differences

Svo..‘+v.,+| - Svo+...+vg, k= Oa 1’2a

are independent and identically distributed. Their distribution is equal to that
of S, = S,, and, consequently their expectation is E(S,). Now,

n+..+vk _ Sy, +...+v Sy, +...+

k k /V1+...+Vk'

Clearly, 1) + ...+ vy — +00 as k — 00, since ¥; > 1,1 > 1. By the strong law
of large numbers it follows that

Sl/ + “ee + Vk
vi+..+u —E(Y1)=a>0 as.as 400
and that
S"l_+k__'*’_”_"_ —~ E(S,) as. as k — +oo.
Consequently,

nm+..+v -

: a~'E(S,) a.s.as k— +oo.

By the converse of the Kolmogorov strong law of large numbers, it follows that
E(v) is finite and

E(v)=a"'E(S,).

This proves our assertion/cf.[5]/.

Our method of proof of Blackwell’s theorem permits us to prove the fol-
lowing extension of Wald’s identity:
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Remark.

If a = EY:) > 0 is finite and E(r) = +4oo then necessarily
E(S,) = 400. To prove this, consider the same random variables as in the
proof of the preceding theorem. Then, we have

n+..+uS,+.+u _ S, +..+u
k 4.+ k )

Since, by the strong law of large numbers, the first factor on the left hand side
tends to +00 and the second to a > 0, we see that the a.s. limit of the right
hand side is equal to +00. This means that E(S,) = +00.

Blackwell’s theorem says that if (Syan, Fn) is an integrable submartin-
gale/supermartingale/and E(Y;) = a > 0, then from the fact that E(S,) is
finite it follows that E(r) < 400. In other words, on the basis of Theorem 1,
(Svan, Fp) converges in Ly to S, .

Now, we give a new proof for this fact by helps of a submartingale conver-
gence theorem. The following theorem would be considered as a generalization
of a well-known theorem of J.Neveu cf.[2].

Theorem 4.

Let (X, Fn) be a non-negative submartingale and let v be a stopping

time. The stopped submartingale converges in L; and lir+r_1 Xn =0as. on
n—+00

{v = 400} if and only if the conditions

X,dP < 400, lim / XnpdP =0.
n— <400
{v<+oo} {v>n}

are satisfied.
Proof.

Necessity. If the sequence (X, an, Fp,) converges in Ly to a limit Y, which
is equal to 0 on {v = +o0}, then Y = X, on {v < +00} because on this event
the a.s. limit of X, A, is X,. Moreover, we have

/ X,dP = /YdP < 400,
{v<+o0} Q

and, as n — 400,

/X,,dP: / XyandP — / YdP = 0O,

{vr>n} {vr>n} {v=+o0}
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using the L;-convergence of X,a, to Y.

Sufficiency. To prove that the conditions are sufficient we remark that the
non-negative submartingale {X,1,} is bounded L; in since when n — 400 we
have

E(le\n)= / deP+ / XndP—* / XydP<+OO
{v<n} {v>n} {v<+oo}

Thus {X, An, F,,} converges a.s. and the limit liT Xy, exists on {v = 400},
n— 400

too. Especially, this limit equals 0 since by the Fatou’s lemma

n— <400 n—+400
{v=+0c0} {v=+00}

/ lim X,dP < lim inf / XndP <

< lim XndP =0.

T n—+4o0
{v>n}

Therefore, the random variable X, can be defined everywhere by putting X, =
lim X, =0 on {v = 4+00}. The convergence of (X, an, Frn) to X, in Ly can

n— <00
be proved in the following way:

E(l XvAn—Xv |)= / |XyAn—Xy ldPS

{r>n}

< ] XyandP + / X,dP =

{v>n} {r>n}

= / XndP + / X,dP -0+ / X,dP =0.
{v>n} {v>n} {v=+o0}

This proves the assertion.

Now, we are in the position to prove Blackwell’s theorem in another man-
ner using martingale techniques.
Theorem 5.

Let v be a stopping time such that P(v < +o00) = 1. Also, we suppose
that E(Y1) = a > 0 and E(S,) are finite. Then the stopped submartingale
(Svan, Fn), converges in Ly to S, if and only if E(v) < +00.
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Proof.

Suppose that S, A, converges in Ly. Then, its Ly limit is necessarily equal
to Sy, since S, is the a.s. limit of S,n, when n — +00. Consequently, | S, | is
integrable. We have

n
| Svan |=Z|Si I x(v =9+ |Sn | x(v > n)
i=1
and this converges to | S, | in L;. At the same time, the sequence
n
3> | Si | x(v = i) converges increasingly to | S, | so that by the monotone
i=1

convergence theorem, we also conclude that

E(|S =) Six(w=i) )10 (n— +o0).

=1
From these we conclude that E(] S, | x(v > n)) — 0 as n — +o00. This means
that we also have E(S} x(v > n)) — 0 as n — +oo.

Consider the non-negative submartingale (Sjfa,, Fn,). By the preceding the-
orem E(S;}x(v < 4+00)) < 400 and E(S,*,'x(u > n)) — 0 together imply that
(Stan, Fn) converges a.s. and in Ly to S} . It is easy to see that

0= llm E(S+x(u>n))— 11m E(ShH,) — E(S)),
since

E(Stx(v > n) = E(S}an) - / SdP.
{v<n}
The expectatlon E(S}) being finite we deduce that the increasing limit
lim E(S},,) is finite and equals E(S}). Since E(Syan) = aE(vAn) > 0, we

n—+400
conclude that

lim E(S},,) > sup E(I Suan 1)/2,

n—+o00
which implies that sup E(] Syan |) < +o00.
n>1

Now, to prove that E(v) < +oo remark that
| E(Suvan) 1< E(1 Svan 1) < sup E(| Surr ) < +oo.
>1

By means of Wald’s identity, we have E(Syan) = aE(v A n) and so
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| E(Suan) |=aE(v An) < sup E(] Suak |) < +o0.
>1
Now, let n — +00, then
aE(v An) — aE(v)

and so we have
aB(v) < sup E(| Sunt ) < +00
>1

and since a > 0 and finite, it follows that E(v) < +4o0.

Conversely, if E(v) < 400, then a = E(Y;) > 0 being finite, by Theorem
1 we conclude that S,a, converges in L; to S,. This proves our assertion.

5. Gut and Janson’s Theorem

Here, we also reproduce the original theorem of Gut and Janson [3] and,
as we shall see, the proof is essentially simplified.

Let v = 0,v; = v and

v2 = 9(Ye,41,Yoi42, )5 ooy

Ve = g(YVh-l+1’Y”h-l+2’ )

be the random variables defined by the function g of Lemma 2. These by
Theorem 2 are independent, identically distributed and positive integer-valued
having finite expectation E(v).

Let 7, be the stopping time defined by the formula:
Tn =min(k : vy + ...+ v > n).

Then, 1 < 7, < n, since vy, vy, ... are not less than 1.
We have the following renewal theoretic result.
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Lemma 3.

If n — 400 then
Tn/n — 1/E(v) a.s.

Proof.
Remark that 7,, — 400 a.s. when n — +00. Also,

n+.+v,1<n<y+..+vy,

Dividing by 7, and using the strong law of large numbers for a random number
of random variables we see that:

. n
lim — = E(v) a.s.
n—+00 Ty
This proves the assertion of the lemma.

The following assertion gives an estimate of the distribution of the random
variable vy + ...+ v, — n.

Lemma 4.
For j =0,1,2,..., we have

Pvri+..+v,,=n+j) <P >2j+1).

Proof.
For every fixed j =0,1,2, ... we have
Pni+..+v,, =n+j)=

P+ ..+ui=n+jm=k)=

I
e
S II|‘|=
-

3
|
—

Pni+..+uai=Llik=n+j—Lr=k)<

k=11t=1
n n-1
< ZP(Vl—l-...-I-Vk_l=£)P(V1,=n+j—l)=
k=1 ¢=1
n n-1
= Pri=n+j-0Pvni+ ...+ -1 =0),
k=1t=1

since v; and vy + ... + v, are independent and v; has the same distribution
as v;. Since for fixed £ the events {v1 + ...+ vk_y = €}, k =2,3, ... are disjoint,
we have the folloving estimate
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Pvi+...4v,, =n+j) <

n—1 n
< ZP(lq =n+j—£’)EP(V1+...+u;,_1 =4 <
=1 k=1
n-1
<Y Pi=n+j-0) <P >j+1).
=1

This proves the assertion.
We are now in the position to prove the following:
Theorem 6.
Let {Suan, Fn} be the stopped random walk and suppose that E(S,) and
E(v) are finite. Then, necessarily E(Y}) is finite.
Proof.
We can suppose that E(S,) = 0, otherwise we substitute Y; by

Y: — E(S,)/E(v). Let vy, v, ... and 7, be defined as in the preceding two lem-
mas. As

va +..+wn= (va - SO) + (SV1+V2 - Sllx) +..+ (SV1+~-+V|. - "l+-~+l’k—l)

and the members on the right hand side are independent and identically dis-

tributed with expectation E(S,) = 0, we see by the strong law of large numbers
that

Sn +’.c..+w. -0

as k — +00. Also, by the strong law of large numbers

a.s.

Sy, + ...+,

Tn

—0 a.s.

as n — 400, since 7, — +00 as n — +o00. This and the preceding limit relation
together imply that
Sy, +...+v,

n

—0 a.s.

as n — +00 since by Lemma 3 we have 7, /n — (E(v))™!.

Now, we show that S,/n — 0 in probability when n — +o00. In fact, we
have
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P(] Sn |> 2n¢) <
S P({l Svi+..4ven 12 n}U{| Suy4.. 4v,, — Sn |2 ne}) <
S P(| Sy, + ...+ vr, |2 n€E) + P(| Sn4r — Sn |2 ne,
forsome k <vi+..+v,, —n)<
S P(| S, + ...+ vr, |2 n€) + P(| Satk — Sn |2 ne,
forsome k <wvi+..+v,, —nvi+..+v,, —n<j)
+ P+ ...+ v, —n>j) <

(o o]
< P(| Sy, + ot vry |2 n0)+ P(max | Se |2 ne)+ Y P(vi 2 K),
J N
== k=j+1

by lemma 4. From these we see that:

lim sup P(| —|>2¢) < Z P(ny > k)
k=j+1

as n — +00. Since j was arbitrarily chosen but fixed and E(v) < 400 we get:

lim sup P({ — |>2¢)=0.

n— 400
In the next step of the proof we show that

1
; lr?ka?n l Sk |—’
in probability when n — +o00. If the random variables Y;, Y5, ... are indepen-
dent identically and symmetrically distributed then this fact follows from Paul
Levy’s inequality according to which P(lr<n;12( | Sk |> ne) < 2P(]- Sn |> ne)
SkESn

and we deduce that

P(; lr(nax | Sk |>€)—0
as n — +o00. In the general case let Y/, Y7, ... be i.i.d. random variables and let
us suppose that this sequence is independent of the sequence Y;,Y5, ... and has
the same distribution. Then the sequence Y; —Y{,Y>—Y5, ... is a sequence of in-
dependent , identically distributed and symmetrical random variables. Denote
Sy =Y{+..4Y/,k=1,2,.. Then from the preceding limit relation

P(; Tax | Sk —Si [>€) <
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< 2P(| Sp — S, |> ne) < 4P(| Sn |> n%) -0

as n — +o00. But by the symmetrization inequality

1 1 ,
gP(max | Sk —m(Sk) |2 ne) < P( T2 | Sk — S |2 €) =0,

where m(S;) denotes the median of Si;. Note that
max | m(Se) |

1<k<n
n

-0

as n — +00. To show this let us remark that m(cX) = em(X) for arbitrary
¢ > 0 and that P(a < X < b) > 1 implies a < m(X) < b. By what we already

proved we have
Sn 1
PUZ <> 3,
if n > no(e€). Thus,

Sk
k

whenever k > ng(€). For k < ng = ng(€) we have Sg/n — 0 a.s. and conse-
quently for sufficiently large n we have

|28 oy () 1 m(3E) 1 E <3 1<,

Sk 1
P(l 2k Z
(121<> 3,
which shows that
| m(Sk) | <e
n

Therefore,

max LD
1<k<n = n

as n — +00. Let ny = ny(€) be so large that the inequality
S
max ——-——l m(Si) | <ef2
1<k<n n

be satisfied. Then, by the preceding limit relation
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1
P(; 1?1?'5":- | Sk |>€¢/2) =0

as n — +o0o whatever be ¢ > 0. This implies that for n > ng, where ng is
appropriately chosen, we have

1
P(l?fgxn | Sk |>n) < 3
For k > ng, we have

P( min, | Sj |> k) > P({| Y1 |> 2k} {1‘?,% |S; =S |<k}D) =

1
= P(IY [> 20)P( msx |15} 1< K) 2 5P( Yi [>20)
On the other hand, for all k, we have

P(min, |5 1> k)= P({min, | 5; > K} 0 {v > KD+
+P({min, | S; > K} N {v <D <

SPWw>k)+P(S |>k).
Summation finally yields

1 o0
3 Y P(1i|>2k) <

k:ﬂo
<Y Pw>k)+)_P(S, |>k) < E@)+E(|S, |) < +00,
k=1 k=1

and thus E(] Y; |) < 4+o00. This proves the assertion.
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