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ON AN INEQUALITY OF M.J. KLASS

N.L. BASSILY*

Abstract. Let Y},Y5,... be a sequence of i.i.d. zero-mean random vari-
ables with the partial sums S, = Yi+...4+Y,,n > 1. Let v be any (possibly ran-
domized) stopping time with respect to {Y,}. Let further a, = E(]| S, |) and
suppose v is independent of {Y,}. If the Wald equation E(S,) = E(Y1)E(v) =
0E(v) = 0 holds then technically we require E(] Sy |) < 400 and in this case

E(ay) < 400, since E(| S, |) = E(z | Si | x(v = 1)) and v and {Y,} are in-

dependent. Hence, to obtain E(S.,) = 0 for all stopping times having common
marginal distribution, E(a,) < 400 is a minimal necessary condition on that
distribution. M.J. Klass in [1] has proved that this condition is also sufficient.

Namely, he proved the following interesting inequality: for a power p > 1 we
have

E(sup | Syan IP) < CE(a}),
n>1

which by the uniform integrability implies the validity of Wald's equation.
Here a}, = E(lr?a&x | S; |P) and C > 0 is a constant depending only on p. The
tSn

aim of the present note is to sharpen this result and to prove the following
two-sided inequality: for p > 1,

cE(a{P) < E(sup | Suan [P) < CE(aP)).
n>1

Here, a¥) = = E(| Sn |P) and the constants ¢ > 0 and C > 0 do not depend on
the dlstrlbutlon of v. In such a way our two-sided inequality is an improvement
of M.J. Klass' one in LP-spaces.
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1. Introduction and Summary

Let Y;,Ys,... be a sequence of independent and identically distributed
random variables (i.i.d.) and consider the generalized random walk defined by
So =0, Sp =Y1+...4Y,,n > 1. In this paper we suppose that E(Y;) = 0. Let
v be any (possibly randomized) stopping time with respect to the increasing
sequence of o-fields F, = o(Y1,...,Ya),n > 1, such that P(v < +o0) = 1.
We also consider the stopped random walk So = 0 and {S,an},n > 1, where

Svan = Z Yix(v > i). This stopped random walk has a limit on the event

{vr < +oo} whilst it does not exist on the null event {v = 400} except

trivially the case when P(Y; = 0) = 1. We omit this trivial possibility from

our considerations. On the event {v = 400} we define liril Syan = 0, which,
n—<400

from the point of view of taking expectation does not play any role. Thus on
the set 2 of the elementary events we have

lim Syan = E}’.x(+oo >v>i)= ZS,.X(V =n).

n—+400

We shall denote by S, the limit of Syan as n — +0c0 on the event {v < +oo},
We have

S, = Z;Y,-x(u >i)= ZlSnx(V =n).

The main interest in considering the random variable S, is to establish Wald's
equation, i.e. to prove under some conditions the validity of the relation

E(S,) = EVi)E()=0-E(v) =0

If v is independent of the sequence Y),Ys,..., then E(| S, |)
Y. E(| Sa |)P(v = n), or, introducing the notation a, = E(| S, |), we have
n=1

E(1S, )= Y E(I S )P(v = n) = E(ay)-

Consequently, if, in addition to the independence, we also suppose that E(a,) <
+00, then E(S,) = Z E(Sa)P(v = n) = 0, which is Wald's equation. The
idea of M.J. Klass i 1s that for the validity of Wald's equation the finiteness
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of E(a,) is in the above sense necessary at least when v and the random
variables Y},Y,... are independent. In his paper [1] M.J. Klass proved that
for p > 1 and without supposing the independence of v and Y;,Ys,..., the

inequality E(sup | Syan |P) < CE(a}) holds, where a}, = E(1I?'a<x | S; IP)
n>1 <jign

and C > 0 is a constant depending only on p. Now, if E(a}) < 400, then

E(sup | Suan |P) < 400 and this implies already the uniform integrability of
n>1

{S,An} and consequently Wald's equation.

Introduce the notation a{’ = E(| Sn |P), where p > 1 is some power. We
shall prove the validity of the following two-sided inequality:

cE(af’) < E(sup | Syan I?) < CE(a{P),
n>1

where in the case 1 < p < 2 we also suppose that 02 = E(Y?) < +oo. Here
the constants ¢ > 0 and C > 0 do not depend on the distribution of v. In such
a way we improve and sharpen the inequality of M. Klass.

The idea of the proof will be based on the following known inequalities:
a/ if p > 2, then

cplo? EWP?) + E(| Y1 P)E(v)] < E(sup | Suan IP) <
n>1

< Glo?E(/?) + E( Y P)B)],
where ¢, > 0 and Cp, > 0 are constants depending only on p. It is clear that
the left- and the right-hand sides are finite if and only if so are E(¥P/?) and
E(] Y1 |P). This inequality can be found in [2].
By the monotonicity of the LP-norms we have

o <[E(| Y1 )P

since p > 2. Further, » > 1 and p/2 > 1 and so the preceding inequality can
be written in the following form:

(*) cpo” E(w?'?) < E(sup | Suan IP) < 2GE(I 11 PYE@WP'?).

b/ For 1 < p < 2 Burkholder and Gundy [3] have proved the following
two-sided inequality: if 02 = 1, then
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(x+) cp,aB(VP?) < E(sup | Sunn ) < C,E(v*?),
”—

where C, > 0 is a constant depending only on p, whilst ¢, 4 > 0 is such
a constant which depends not only on p but also on d = E(| Y; |). These
authors have given a counterexample proving that on the left-hand side of this
inequality one cannot have a universal constant depending only on p.

Employing these inequalities we can thus prove that E(v?/2) and E (af,p ))
are equivalent, provided that E(| Y; |P) < 400, if p > 2 and 0? < +o0, if
1<p<2

2. An Upper Bound for E(sup | S,an |P)
n>1

In order to prove the right-hand side of our two-sided inequality we need
a simple lemma.

Lemma 1. Let Y7,Y5,... be a sequence of i.i.d. random variables and let
p > 2. Suppose that E(] Y; |P) < +00. Then

c‘(pl),,pnp/2 <alP) < C}(,I)E(l Y; |P)nP/2,
where cg,l) > 0 and C,(,I) > 0 are constants depending only on p.
If 1 < p<2and o? = E(Y{) is finite then ol < C,(,l)apnp/z.
Proof. Using the Marcinkiewicz-Zygmund inequality( [4] and [5]) for p >
1, we have '

DE((Y2 + ...+ Y2PI?) < ol <COHE((Y2 + ...+ Y2PI?),

where cgl) > 0 and C,(,l) > 0 are constants depending only on p. If p > 2 then

by the monotonicity of the LP-norm we have
B+ o+ YR < (B0 + .+ V2P,
or, in other form
cgl)(nqz)”/2 < c,(,l)E'((Yl2 +...+Y2P?) <o),

which proves the left-hand side of the first inequality.
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On the other hand, by the so-called C,-inequality we have

E((Y? +...+ Y <o EQ | Yi ) = nfE(I 11 P).

i=1

Therefore,

af) <CE((Y? + ...+ Y2)P?) < CVE( Y P)n?/?,

which proves the right-hand side of the first inequality.
If 1 < p <2, then again by the monotonicity of the LP-norm we have:

[B(Y? +...+ YIPVP S [BYE + ...+ Y2 = (no?)! V2,

and so

a® <COE((Y? +...+ Y2)P?) < CMVoPn?l2.

This proves the lemma.
Now, we use Lemma 1 to derive the upper bound for E(sup | Syan [P). In
n>1

this connection we prove:

Theorem 1. Let Yi,Ya,... be a sequence i.i.d. random variables with
mean value 0 and for p > 1 let us denote by o the expectation E(| S, |P).
Let further v be an a.s. finite stopping time with respect to the increasing
sequence Fy, = o(Y;,...,Ys),n > 1, of o-fields. Then, we have

E(sup | Syan IP) < CE(a{P),
n>1

where the constant C > 0 depends on p and on the distribution of Y7 and is
independent of the choice of v.

Proof. We can suppose that E(af,p )) < +00. First, we prove the assertion

for p > 2. Applying Lemma 1 we have cﬁ,l)a”n("/z) < aS,P) foreveryn=1,2,....
From these inequalities we get
EW*'?) < KE(a),
where K = :(1;70"’ is a positive constant. This implies that E(vP/2) < +oo0.
P

Also, we have E(] Y7 |P) < 400, since E(asp)) < 400 and so there exists an
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index n for which P(v = n) > 0 and so E(| S, |P) < +oo. This, by the
submartingale property, implies that E(] Y} |P) < +00. By using (*) we obtain

E(sup | Syan [P) < CE(aE,")),
n>1

where the constant C' = 2Cp:(ln-a‘?E(| Y1 |P) does not depend on choice of v.

Now, we prove the assertion for 1 < p < 2. For this purpose let bs.p ) =

= E((Y Y?)?/?). Since the Y/s are not equal to 0 with probability 1, the
=1

sequence {bsf )} strictly increases with n and tends to +oo as n — +00. Define

ng = 0 and let ny = min{n : P >2¥},k=1,2,.... It is clear that ng = 0 <

n; < nz <.... Using this definition let »* = sup{k : nx < v}. It then follows
that 2* < b%). < b%) and

Nye

{v* 2} ={ni <v}={n. 2 ni}.

Now by the Burkholder-Davis-Gundy inequality ([6]) we have
E(sup | Suan |7) < CoE((YZ +...+ Y22,
n>1

By the definition of v* we see that v < n,.41. Also, p/2 is a concave power.
It follows that

B+ 4 Y <EGY S YA =

i=0 n;<j<niy1

=E(Q_( Y, YP’x(r2i)=

i=0 n;<j<nip

=EQY (Y YPPxw2n)}=) E( Y, YPHPE2n).

i=0 n;<j<nin i=0 n<j<niq

Here we have used the fact that the random variables

(Y Y?P/?and x(v > n;) are independent. Consequently, by the defini-
ni<j<nip
tion of the n}s we have

Nnig1—1

B Y VPSE(Y VPP <2t

n;<j<niq j=1
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Therefore,
o o] . (e o] .
E((Y2+...+ 2P <Y 2P > ny) =) 2Pt 2 i) =
i=0 =0
= E(Z 2ty (v* > i) = 2E( ) < 4E(2"*) < 4E(bP).

i=0
On the basis of the Marcinkiewicz-Zygmund inequality we see that
P < B2 P) = el
p
from which
@) < L p(a®
E(bup ) < (_I)E(avp )
Cp

Comparing the obtained inequalities we finally obtain for 1 < p < 2 that
E(sup | Suan [P) < C,E((le +...+ sz)p/z) < Cp4E(b£p)) <
n>1

(1) E(a(P))
which was to be proved.

3. A Lower Bound for E(sup | Syan |P)
n>1

Theorem 2. Let Y;,Y,,... be a sequence of independent and identically
distributed random variables with zero mean. For p > 1 let us denote by
(p ) the expectation E(| Sn |P). For 1 < p < 2 we suppose that the variance
= E(Y;?) is finite and = 1. If v is an a.s. finite stopping time with respect

to the increasing sequence F,, = o(Y1,...,Ys) n > 1, of o-fields, then there
exists a constant ¢ > 0 which depends on the distribution of Y; and on p but

not on the choice of v such that

E(sup | Syan [P) > cE(a®)
n>1
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holds.

Proof. Without the loss of the generality we can suppose that
E(fg}; | Suan |P) < +o00. Since | Y7 |< ’311;;; | Syan |, it follows from the assump-
tions that E(| Y1 [P) < +00. We also have supposed that in case 1 < p < 2
the variance 02 = E(Y}?) is finite and = 1. Thus by Lemma 1 we get for all
p > 1 that a(p ) < AnP/? holds with some constant A > 0 depending on the
distribution of Y;. Namely, for p > 2 this is equal to C,(,I)E(| Y1 [P), whilst
for1 <p<2thisis C(l)a" where C(l) is the constant in the Marcinkiewicz-

Zygmund inequality depending only on p. Consequently, E(a(p )) < AE(v?/?)
holds. Applying this to the left-hand side of (*x) in case 1 < p < 2 and to the
left-hand side of () in case p > 2 we finally get

cp.aB(@) < ¢y dAB(W?) < AB(sup | Sunn ),
from which

_%pd_ pa(p)
C( o —2—E(a{?)) < E(sup | Svan IP),

if 1 < p <2, whilst for p > 2 we have
c},l)a”E‘(aff’)) < cﬁ,l)a”AE(u”/z) < AE(sup | Syan IP),
n>1

and so
1
c§, )gP

—Eaff’) < E(sup | Suan |P).
OBV P) (@) < E(sup | Svmn )

The proof is completed.

The Main Result

If we combine the assertions of Sections 2 and 3 the following result can
be formulated:

Theorem 3. Let Y7,Y5,... be a sequence of independent and identi-
cally distributed random variables with zero mean. Let further v be an al-
most surely finite stopping time with respect to the increasing sequence F;, =
= o(Y1,...,Yy) of o-fields, n = 1,2,.... Let p > 1 be some power and put
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o) = E(| Sp |P),n=1,2,.... In case 1 < p < 2 we suppose that the variance
0% = E(Y?) is finite and = 1. Then the inequality

cE(a) < E(sup | Syan IP) < CE(al)
n>1

holds and on p, where ¢ > 0 and C > 0 are constants depending only on the
distribution of Y; and are independent of the choice of v.
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