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APPLICATIONS OF THINNING PROCESSES
V.A. GASANENKO

Dedicated to the memory of Professor J. Mogyorddi

1. Introduction

In the present paper there are obtained some limit theorems for thinning
processes on the basis of practical cases.

Let 0 = t; < t2 < ..t,... be a sequence of increasing moments of time.
It defines the point process on the time line ¢ > 0, then any subsequence
t;, <t;j, <...<t;, <... defines thinning flow.

Definition of the thinning flow consists of three parts: initial flow; exclusion
rule of parts from the initial flow; flow after using exclusion rule (thinning flow).
Authors of papers on thinning processes usually invistigate one from these parts
on condition of sufficiency of information about another parts.

A. Rényi (1956) has proposed the following raring scheme of initial rec-
curent flow: the point belongs to thinning flow with probability p, and the
point is excluded with probability 1 — p. He obtained sufficient conditons of
approximation of thinning process by means of Poisson process for p — 0.
Necessary and sufficient conditions for this approximation are obtained in the
works [6,10].

J.Mogyorédi (1971) has proposed a general raring scheme of initial recur-
rent flow: let 73,7 > 0 be moments of appearance of events in the recurrent flow
and {z(?)}i>1 be sequence of independent, identically distributed integer-valued
random variables, z(i) € {1,2,...}.

Then 79 = 0, T2(1), T2(1)42(2)s -+ Te(1)+2(2)+...+2(k), --- are moments of ap-
pearance of events in the thinning flow.

If P(2(1) = m) = (1 — p)™1p, then it is the scheme of A.Rényi. V.A.
Gasanenko (1983) extended Mogyorddi’s scheme for general random processes.
I.N.Kovalenko (1973) proposed another way for generalization of Rényi’s
scheme. In section 2 we will propose a simple procedure of calculation of
the events’ sequence number flow the thinning processes for special cases.

" Section 3-5 are devoted to the application of thinning processes for special
cases.
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2. Basic results and definitions.

Let 7;,i > 0 be moments of appearance of the events in the initial flow
and x; be indicator of exclusion of the points:

~_ J 0, ifi—th event is excluded;
Xi =11, ifi—theventis kept.

Then we consider the integer-valued random process

§(k) =inf{j 2 1:x(k+j)=1}

It defines the correspondence of sequence numbers to kept events. Let B(k) be
the number of k-th kept event, then A(k) = Bk — 1) + &(B(k — 1)),
k > 1, (0) = 0 and moment of appearance of this event in thinning flow is
equal to (k). Author [4,5] has obtained limit theorems for thinning processes
with the help of process £(k). We shall use the following result. Define two
sequences of numbers G,(m), a,(m). If v(t) > 1, t = 1,2,... is integer-valued
random process and P(v(t) = k);= > P(n = k), for fixed k=1,2,... where 7
is random value, 7 € 1,2, ..., then f,(m) is the uniform speed of convergence
to stationary distribution: »

Bu(m) =sup | P(v(m) =k)— P(n=k)|, m>0.
k1

If F¢., F; are o-algebras constructed according to families of random values
{v(t),t <z} and {v(t),t = z}, then a(m) mixing coefficient.

au(m)= sup | P(AB)-P(A)P(B)|, m2 1.

B€Frym

Consider the scheme of series: process £(t) depends on the sequence number of
w

series £4(t),n > 1. The symbol =  denotes the weak convergence of the
. _ n — 0o

distribution functions.

Theorem 1. Let ¢, < oo be a sequence, such that for n — oo the next
conditions hold

w
P(éa(0) < cnz) = Gi(z), G1(0)=0 €))

n — oo
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w
P(nn < cnz) - G2(‘t)’ (2)
n — 00
ag.(cn)c? — 0 3)
Bea(en) =0 (4)
then
w
P(Ba(m)csl<z) = G1+G™ V()
n— 00

here * is symbol of convolution: G;,G; are distribution functions.
Remark 1.

p
Note that in this case and if 7, *n~! —  u < oo then it follows the
‘ n — 0o
w
convergence P(gn(m)ch(z) = Gix G [e.g 1.
n — 00

3. Flows from GI/G/1/0 systems.

3.1. Flow of customers which are not served.

Definition.
71 is moment of arrival of the i-th customer into system, 7 = 0;
e is service time of one customer;
G(X), F(X) are distribution functions of 7, and e correspondingly;

c(k) = P(me € 0 < 7i41) is the probability that the service of the first
customer 1is finished between the arrival into system.of k-th and k+1-th ones.

Let the i-th customer have number i and we shall denote by A(k) the
number of the k-th customer who is not serviced.
Define indicators x(#),i > 1

(i) = 1, if i-th customer is lost;
XW'=10, ifi-th customer is serviced;

and process £(I) : €(I) = min{j > 1: x(I + j)}.
We can obtain the following relation for B(k) :

Bk) = B(k — 1) +£(B(k — 1)).
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In order to use the theorem 1 we determine the characteristics of process £(I).
Put ¢ := ¢(1).

Theorem 2.

~_n_ JCY2 (1 —=¢c)g, forl>2,
PE@ =n= {I—Qi, forl=1,

lim g; = (3 ke(k)) ™.
i—00 1:22:1

Proof. The event {£(i) = {},1 = 2 denotes, that in the interval [r;, 7i41)
one from services is finished and customers arrived at moment 7;4+ are serviced
till moment Tiyr41, k = 1,2,...,1 — 2. The customer arrived in the moment
Ti+1—1 1s not serviced till moment 7;4;. Denoting by g¢; the probability of arrival
the i+1-th customer into free system we obtain P(£(i) = 1) = gic'"?(1 — ¢).
The first part of theorem 2 is proved.

The arrival of i+1-th customer into the free system coincides with one from
the events: the service is finished in the interval [rg, 7k4+1) and the customer
arrived at moment x4+ was serviced to some moment z from the interval

{7i,7i4+1),k =0,1,....,i—1. These events are mutually exclusive and so we can
write
g =Y qec(i—k),q0=1, ¢(0)=0.
E>1

Then ¢; > 0 is the bounded solution of the discrete renewal equation. Conse-
quently, the second part of theorem 2 is result of well-known theorems of the
renewal theory.

We compute now the mixing coefficient.
Let ©(k) be the time at which the k-th service is finished. Furthermore,

PEG@) =LE&(i+n)=m) =

= 2': P(1; < O(k) < Tk41)c""2(1 — c)c™ 2

k=1
S (1 +1)e(da) . -c(Gp); 4r 21, r=T,q
14j14...4jp=n—I-1

PE@) =14 +n)=m) =

= Z P(1 < O(k) < Tig1)d72(1 = ¢)e™ 2.
k=1

S c)..ely); i 21, r=Tq
Jit.+jg=n+i
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Estimate the next value

n-[-2 n—l-ji1-1 n=l-2-(1+..4jn-1-3)

c(j1 +1 . .
im= Y G ) Y elnr)-
j1=1 ja=1 Jn-1-1=1
n+s ﬂ+i-—j1 "+'.—(J‘l+-n+jn+i—l)
=dci) Y ). > (Jn+i)
J1 ja=1 Jn1-1=1
It may be shown, that
n
Jn)<n Y c()+
j=r(n)
"+"_(jl+~~-+jn—l—2) ﬂ+i—(j1+...+j,.+j_1)
+ Z c(Jn-t-1)..." Z c(n4i) = 1|+
Jn-t-1=1 Jngi=1 (5)
e+l e
+ 30 1 S = eli) 12 ea(n) + an(n) + as(n)

Jj1=1

The first summand of ay(n) is the probability of events, that one from
services is finished in the interval [r;_;, 7;_i41). For this probability holds the
inequality

-1
E P(rioi < O(k) < Tigga) 2 ¢

k=1

Furthermore

ag(n) < (1-¢)*J(n). (6)

According to theorem 2 and Kalashnikov’s result [9]

Be(n) <H Y c(k), H<+oo. (7)

k2n+1

Let function F'(z) depend on parameter n on such way, that c .l
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Theorem 3. If the conditions

R P (8)
P
nl, — p<oo 9)
n — oo
hold, then
w T
P((1=cn)Tppmy <2) = (1-ezp(—=))"™.
n — 00 H

Proof. At first we shall prove the next relation

cn(j + l) = (1 - Cn)cn(j) + 0(1 - cn), i1 (10)

For j = 2 from condition (8) we obtain

en(2)=(1—cn)(1—-0(1))=(1—-ca)(1 —cn+cn—0(1)) =
=cn(l=cn)+ (1 —cn)? +0(1)(1 = cn) = cn(l —cn) + 0(1 — cn).

Further, let relation (10) be valid for j = k. Now we show by induction.

Using 1 — ¢p — ¢n(2) = Y en(k) and (8)
k>3

ca(k+1)=(1=ca)o(l)— D ca(l)=

1>3,l=k+1
=1 —-cn)en(k) = (1 —cn)((1 = cn)en(k = 1)+ 0(1 —cn)+
+(1=ca)o(1)- > eall) =
123,1=k+1
= (1-cn)en(k) + o(1 = ¢p).
We now examine the conditions of theorem 1. Using the relation (10) as n — oo

a1 ([(1-¢n)7']) =0, as([1—ca)™"]) = 0.

and the convergence ¢! — 1 when i —1 < ([(1 = ¢n)”!]) leads to
az([(1—en)"1])) = 0 as n — co.
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Further, using (5) Jn([(1 — ¢cn)]) — 0 as n — oo, according to (6)
(1= cn) 2ag, ([(1 = cn)~1]) — 0 and Be([(1 — cn)~!]) — 0 according (7).

Finally, we obtain limit of the distribution functions of £,(1) and 7,.
According to theorem 2

[=]
P(&n(1),2) = Y P(¢n(1) = k) = 1 — 11,

k=1
P(na < ) =1—mclfl-?,

where

m = lim gq1-c,)-1(n).

From the (10) it follows that m = 1. Consequently, applying theorem 1 and
remark 1 we obtain

P(Bn(m)(1 — ¢n) < z) — (1 — ezp(—2z))*™
P(7pa(my(1 = ¢a) < 2) = (1 = ezp(=2))"™

Notice, that condition (8) corresponds to condition from the well-known
theorem of Belyaev 1.K.[2].

3.2. Flow of serviced customers.

Put

o(i) = l, if customer is serviced,
T 10, if customer is lost;

x() = min{i > 1: 0 +1) =1},
r(k) = r(k = 1) + x(r(k — 1)).

Here r(k) is the sequence number of k-th serviced customer. Definition of
2,7 >0, ¢(¢),i > 1is identical to definition from 3.1.

Theorem 4.
P(x()=d) =c@@):1>1
P(n=1)% lim PEW) =) = Y e()( L ke(®) ' 121

i2i k21
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Proof. The first relation follows from the definition of ¢(#) and x({).
-1
It is not difficult to show P(x(I) = i) = }_ gjec(l + i — 1 — 7). Writing the last
3=0
expression for r(I) = o(l) as | — oo

-1 r(l)

S ogic+i—1-j5)=) gjel+i-1-j)+

j=0 j=0
-1 -1
+ Y (@G-cl+i-1-j)+q )Y c(l+i-1-}) (11)
j=r(+1 j=r(l)

We consider, that the first and second summands of (11) converge to zero. The
last summand of (11) converges to ¢ Y c(k).
ki

We now shall prove the limit theorem under conditions ¢, — 0 and

> en(k)k — — oo.
£31

Theorem 5. If the following conditions hold

cn(k) = (1= ca)¥Yen + an(k), (12)
> an(k)k =0, (13)
E>1
n~lr, - p < oo
then z
P(Trf,"')c" <z)=(1- e::p(—-;))"".
Proof.

To estimate the mixing coefficient we consider the next value

J(n) = m;p IP(:(I) =i,z(l+n)=38)— P(z(l)=#)P(z(l+ m) = s)l =

-1 n—i-1
=s1:p Eq,-c(l+i—1—j) Z qre(n—i+s—k)-—
j=0 k=0

I+n-1

-1
—Eq.-c(l-}-i—l—j) Z gc(n+l-14+s-k)| =
j=0 k=0
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I4i-1
= sup (@r4i-1— 2; gic(l+i—1+7))(gn-i-14s—
i=
n—i4+s—1
- Y. ge(n—i—1+5—k) = (q4i-1—
k=n-i
I4i-1 ntl-14s
=3 gicl+i=14))@4n-14s— Y wc(n+l-1+s-k)|.
j=l k=n+l

Then applying (12,13) and the Sheffe theorem we have
J([c;l]) = o(c,z.sup((l _ cn)c:l+l—2+: _ (1 _ cn)c:‘+2l—i—2+s)).

It follows c, 2y, ([c5']) .= 0. According (11-13) by, ([c;']) — 0.
It is not difficult to show that

[extz)
P(xn(1) < ci'z)= ) calk) —1-¢77,
k=1

lez'=]

T kea(®) +lezle] Y calk)

k=1 k>[c;lz]
Y kea(k)
k>1

—1-e""%

P(xn < c;lz) =

Theorem is proved.
4. Firing of neuron.

In this section we shall consider the interaction of two renewal process.
Let Z = {&, i > 1}, H = {n;,i > 1} define two independent reccurent

3
processes and 7; = ) p; be time of i-th H arrival. We rare H by the next rule:
j=1

i-th event of H is kept when interval (7,1, ;] has not anyone from events of
Z. This scheme of thinning is a matematical model of neuron firing which was
proposed in works Colevan R., Gastwirth J.L., Hoopen T., Reuver [3,7]. Put

Jj
j+(1:) = ZT],' -z, ifze [T'j_l,Tj),

=1
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(i) = 1, ifi-th event of H is kept,
X\ = 0, ifi-th event of H is lost.
£() =min{j > 1: x(I1+j) =1},

s =sup P(j*(z) > m),
z
= 14
i=inf P(j*(z) > m), (14)
z20
¢ =P(& > m).

B(m) = B(m — 1) + £(B(m — 1)) is the sequence number of m-th event of
thinning process H’ related to H and 7p(mn) is moment of appearance of this
event in H.

Further, let n be the number of the series and process Z, = {& n,
J 2 1}n>1 depend on n.
Consequently, the process and values j*(z)n, (1), Bn(m), 8n,in, Cn-

Theorem 6. If the next conditions hold

sp— 0 (15)
=—0 (16)
mirm o p (17)
then
W x
P(t5,(m)en <z) = (1-—exp(—=)"", z2>0.
n— B
Proof.

From the construction H’ follows the basic equality of this model
PE() =k) = P(j+(77) < ﬂl+1,j+(‘n+1'< M42y ooy
oo 3T (Mak=2) < Mak=1, 5% (Mgr-1) > M) (18)
Applying (18) and (14) we have

in < P(én(l) =1) < 5o
in(1=80) < P(€n(l) = 2) < 5a(1 = in)

in(1— s,,)"-l.g P((¢a(l) = k) < sp(1 = in)E~ 1.
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Furthermore

1= (1= sp)™
C"———'——s

<Y PEn =k s 200 )
k=1 n

form=1,2,..;1>1.
The next relations are also true
in(1 = 82)"P(§n(l) = k) < P(§a(D) = k,6n(I + 1) = m) <
S P(6n(l) = E)sa(1 = ia)™;
in(1=8n)"P(§n(l) = k) < P(6n(l) = E)P(¢a(l + 1) =m) <
< PEn(l) = k)sn(1 = in)™;

forl,r>1;m>1, (20)
Combining (19) with (15), (16) we have convergences

w
P.() < zs5') = 1-—ezp(-2)
n — 0o

and

4
P(n(l) < zij') = 1—ezp(-2)
n— 00

for any fixed I.
It is sufficient for the fulfillment of conditions (1), (2), (4) of theorem 1.

We now examine condition (3).
According to (20) we have
maz(ag, ([in']), @, (s3] < sn max(an(1 = i)™ = in(1 = n)").
It is not difficult to obtain that
g}gg(sn(l —in)" —in(1 = 50)™) < k(8n —in), k < 00

in other words
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maz(eg, ([s7']), ¢, ([i71])) = o(i2).

Then two sequences of constants [s;!], [i;}] of this model define the same limit
distribution function

z
Gm(z)=(1- ezp(-l-‘-))‘"‘ for 75, (m)-
Noting that i, < ¢, < s, we obtain

w
P(rs,my<c’) = Gm(z), z>0.
n — 00
Remark 2. For example, conditions (16) are correct if Z, is Poisson process.

In this section we will consider the scheme which is proposed by Jagers P.,
Lindwall J. [8].

However, before it to do we have need of the following change of condition
(3) from theorem 1.

If r, is a sequence such that r, = o(cy),rn T 00 and

P
P(a(0)<r,) — >0 (21)

n — oo

then we can change the mixing coefficient a, (m) for mixing coefficient a, , . (m).
Let vy, (t) be a truncated process

_ ), ifv(t)<em —rm,
vm(t) = {g, ifv(t)>em—rm:

FUM) = o(vm(t),t < z)

then
oyrn(Rm)=sup sup |P(AB)- P(A)P(B)]| (22)
z> AGF(<':‘)
BGF!."’CM

It was proved in the paper [5,p.38] that cange of condition (3) by conditions

(21) and (22) c2ag, r.(cn) — 0 as n — oo keeps the correctness of theorem
1.

Now we describe the scheme from [8].
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Let the distance between point-events be defined by the sequence of ran-

dom values {£;}i>1. We fix the integer k and number ¢ > 0. We shall mark the
itk
point-event i iff ) & <e.
I=s
Now we obtain the limit theorem for this marked point flow as ¢, — 0,
where n is number of series n > 1.

Consider, as usually, numbers of marked points.

(i) = l, if i-th point is marked,
X\ = 0, ifi-th point is not marked.

Further
7(l) = min{j > 0: x(1+ j) = 1},
B(m) = B(m — 1) + n(B(m — 1)), m > 1,
B8(0) = 0.

We will assume that sequence {§;};> is stationary in strict sense. Then

ot—s)= Aselig | P(AB) — P(A)P(B) |, t> s

BEFy,

is the strong mixing coefficient.
itk
Put 5 37 &1, i 215 pa = P(si < €n).
=i

Theorem 7. If the following conditions hold

pn—0, ase—0 (23)
Ja, : 8(an) = o(p2) & a, = o(p;!) (24)
In—1
lim ky Zj X(ln — j)P(s1 < €n,814j < €a) =0 (25)
j

where k,, and I, are arbitrary fixed integer-valued functions connected with the
next relations

kp — 00, I — 00
Pnlnkn —1 (26)

kné((pr, — knln)krtl) —0
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then
w

P(Ba(m)p, <z) = (1-—-ezp(—2z))*™,z>0.

Note, that according to Welsh R.E. [14] if §(t) converenges to zero mono-
tonely then condition (26) has solution.

Proof. Definition leads to
P(n(l) =m) = P(n(1) = m) = P(s1 > €,...,8m—1 > €,5m <€),
P(nl)<m)=1-P(np(1)>m+1)=1—P(s1 > ¢,...,5m < €).

According to strict stationarity of {£;} condition (4) is satisfied and the
expressions of limit functions (1), (2) coincide.

Using the equality P(CB) = P(C) — P(CB) and putting
{si > €} = Ai, {si < €a} = Ai, bn = [(p7" = knln)k )]

we obtain
-1

P(m(1) > p;") = P( () 4) =
= P(A]_ teest AI” . A[n+bn+1 * et A21n+bn teest A(kn—l)(ln+bn)+1'

kn—1
ot Akalat(kn=1)b)) = P( _ﬂo (AjQtatba)41 - AG41)1a4i5a) N
J=
kn—1 _
( ,Uo (Aj(atG=1)bat1) * " Ajtatbn)))- (27)
J=
According to [14, p.242], the first summand of (27) has estimate

ka—1
| P( .ﬂo (Aj(tatba)t1 o AG 1) +i50))—
j=

kn—1
= I1 P(Ajaasser s Agrniatisa)| < 66n)kn.
J=

Furthermore
In
P(A1-...-Ai,) =1-P(| J 4)),
ji=1
according to Bonferon’s inequality we have
I

cp—c2 < P(U A) <
i=1
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where
In B o In—1 L
=) P(4;), 2= Y, P(Aidj)=)_ (In—j)P(A1A14;).
j=1 1<i<ji<la j=1
It leads to
kna—1
H P(AJ(In+bn)+1 feeet A(J+1)'n+an) = (l - Inpn + A")k. =
j=0
=1 =lnpn)" + Z
n
where

Y ¥ B e -,

n 1<m<ka—-1

Consequently, according (25), (26) it converges to exp(—1). The second
summand of (27) is not more than knbapn = kn[(p;! — knln)k; P and it
converges to zero according (26). Changing p;! by zp;! and k, by zk, for

fixed z > 0 we obtain

P(na(1) < zp;') — 1 — ezp(-z).

Finally, we examine condition (22). Note, that condition (3) in this case is not

valid.

Define the sequence r, from (21). This sequence is determined from con-

dition

P(na(1) <) — 0
Furthermore
P(1a(1) S ) = 3 _ P(Mn(1) = i) < rnpn,
i=1
and, clearly, if r, = 0(p;;!) then (21) is valid.

According to definitions

Ann,ra ([P;I]) < é(rn)-

(28)

Putting r, = a, and using condition (24), we obtain r,p, — 0, p;; 26(r,) —

0).
Proof is completed.
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