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A SPLINE APPROXIMATION METHOD
FOR THE INITIAL VALUE PROBLEM

y(n) = f(z’y,y')
THARWAT FAWZY and SAMIA SOLIMAN

Suez-Canal Univ. Ismailia,
Al-Azhar Univ. (Girls)

Abstract: In this paper a method to approximate the solution
of the non linear ordinary differential equation of n-th order by spline
functions is presented. The existence, uniqueness and convergence of
the approximate spline solution are investigated. Moreover the stability
of this method is proved. Two numerical examples are considered.

1. Introduction and description of the method.

In this paper we consider the non linear differential equation

(1.1) vy = f(z,y,v)

where f € C([0,1] - R?). We assign to equation (1.1) the initial
conditions:

(1.2) yI(0) =y, i=o0()n-1

We assume that f(z,y,y') is a function on R® to R defined
and continuous in

Diz—zo [<a,|y—y [<By -y, <.
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We also assume for (z,y,y'), (z,v:,¥;) and (z,y2,y;) in D:

(1.3)
| f(z,,9) <M

and the Lipschitz condition:
(1.4)

| f(zy91,9;) — f(zo02,9) ISL((vs —va |+ vy — 92 )

where L is the Lipschitz constant.

We also assume that w, (k) is the modulus of continuity of
y*) on [0,1].

Let y(z) be the unique solution of the differential equation
(1.1)-(1.2).

Our method is to construct a polynomial spline function of

degree m < 2n + 1 approximating the solution y(z) denoted by
Sa (z), where A is the mesh points:

A:0=2,<zZ; <...<zZ <ZTp41<...<zy =1

where,

Zyyr—Zx =h for all k=0(1)N -1

If we integrate (1.1) (n — ¢) times from z, to z,

where z, <z < z,,, and 1 = 0(1)n — 1, putting z = z,,,, then
we get

n—t—1 {435

) _ Y,
(1.5) ) = ;Th“f
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Tk41 thoi-1

+ / / sy 9ltn—i)s 2 (tns))dtns ...

ZTx Tk

(n — 1) times

The corresponding approximate values are defined as
(1.6)

+f / Ftois ¥ (Eni)s U (t i) s - .

E Y E Y

(n—1) times

where 1 = 0(1)n — 1,

(1.7)
. y) k(9
yk(t Z (t—-'l?k)J T <t < Ty
and
(1.8)
n-2 _(5+1)
o)=Y Lot n)+
=0

t th-3

+/ / Ftnos Ui (tnms)s 22 (tms ) dtn_s -

Tk Zi

(n—1) times

and

dt,

dt,

dt,
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n—1_(5+1)
WOEDY

J=0

If 1+ = n, then the exact value yk +1 and the corresponding

approximate value y y,c + , are given from the following relations

(1.10)

y,(,'l)l = f($k+1,yk+1ay},+1)

and
(1.11)

yfc':-l - f(xk+1)gk+1’g;¢+1)

wherey, ., and y, , , are the approximate values of y,,, and y; _,
respectively.

The Taylor polynomial of the exact solution and its first
derivative for z, <t < z,,, are given by the relations
(1.12)

(J)
v =Y Bt -ny + L8 gy

j=0

(1.13)

n-1 (5) ") (n, o
(1) = Z G = —1)! (t—z) ™! (——(—1)—?@—%)

where i, 15 f(xk »Tht1)

and we shall use the above two expansions in the proof of conver-
gence.

We start the calculation by using the substitutions
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% =t i=0()n

2. Error Estimations For the Discrete Approximants.

Before proving the main convergence theorems, we give some
definitions and introduce a lemma which will help us in arriving
at the proof of the theorems.

Definition 2.1.

We denote the estimated errors of ﬂ(‘)

k41 ab any point z,., €
[0,1],¢ = 0(1)n, as the following:

) _p,,(%) =(%)
€rt+1 _| Y41 ~Yrta

Lemma 2.1.

The inequality

Cil)l < L(ek+1 + c;¢+1)

holds true for all k = 0(1) N —1, where L us the Lipschitz constant.
Proof

From the Definition 2.1. and by using equations (1.10) and
(1.11) and the Lipschitz condition (1.4), we can get the required
result.

Definition 2.2

Let A = [a;;] and B = [b;;] be two matrices of the same
order. Then we say that

AL<B
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iff:
i) a;; and b;; are non negative numbers.
ii) a;y S b.'j for all i,j.
Theorem 2.1

Let y*), be the exact values of the solution of (1.1)-(1.2) and
its i-th derivatives at z,,, € [0,1], where t = 0(1)n — 1. If the

corresponding approximate values y yk +1 are given by the formula
(1.6), then the error is estimated by the inequality

ei‘ll < ¢;wo (R)A"

which holds true for all k = 0(1)N — 1, where ¢; are constants
independent of k and w, (k) is the modulus of continuity of y(*) (z)
on [0,1]

Proof

By using the Definition 2.1 and by using (1.5), (1.6), the
Lipschitz condition (1.4), the expansion (1.12) and (1.13), we get

(2.1)

n—i-1 '+J el

() n—i
k+1 S z hJ+LZ(J+n_‘)'hJ+ +

j=0
n-2 i) n e
+L S S— A L ¢ i k__ pit2n-i-1
§(1+"—')! * j_zo(1+2n—z—1)! +

(J)

Z(J+2n—z—2)'

hi+2n—i-—2 + biwo (h)h2n—|’

where ¢ — 0(1)n — 1, and
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2
b L L

L2

@rn—9) " @Bn_i—1)!  @Bnoi-2)

If we use Lemma 2.1, then the inequality (2.1) takes the gen-

eral form
(2.2)

n—-1
o1y S 3 Vel + bowo ()R,
j=0

where

(1+a;h) if
a;;h~* if
a.-,-h"" if
a‘,jhn—i+j—1 if

V.‘j=

1=

1<J
J=0,1and >
J>2andt>)

and a;; are constants independent of h.
By using the Definition 2.2, then the inequality (2.2) for ¢ =

0(1)n — 1 takes the matrix form.

[ _(0)
i
1

ok
2

€t

(n=1)
[ €1

'(1+aooh) ao h o2 h?
aoh”~!  (1+ay,h) a,.h
azoh®~? a3 h""?  (1+a3k) ...  age_, AP

L a’n—th an_uhz a"_lgha [ (1+a"_1"_1h)J

IA

a'On—lh'ﬂ—-1
‘111;-1’7'"—2
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r(0) 1 -
€ h™
eil) hn—2
e | +b'wo(h)R" |

: h

Lc;‘n—l) ] L 1 J

Let us denote

E, = (eg,e,(‘l)),...,ef‘"))'

and briefly write in the form:
(2.3)
Eyi1 < (I, + RA)E, +wo(R)R"*'B

where I, is the n-th order unit matrix and A = [a;],4,5 = 0(1)n—
1 and B is the (n x 1) matrix, B = (b*b*...5*)T. Obviously

b* = max b;.
0<i<n-1

Applying the principle of successive substitution, (2.3) reduces to

k
Eivy < (In + hA)E, + wo (R)R™** B (I, + hA)’

i=0

Since E, = 0, then we easily get

Ek+l S Wo (h)h"C

where C is and (n X 1) matrix whose elements are constants in-
dependent of A and thus the proof is complete.

Theorem 2.2

Let yi';’ , be the approximate value of y)

e+ 1 and be given from
the formula (1.11). Then the inequality
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e,Hrl < ¢ wo (h)R"

holds true for all k = 0(1) N — 1, where ¢, is a constant indepen-
dent of h.

Proof

Using Lemma 2.1 and the results of theorem 2.1, it is easy to
get the proof.

As a conclusion of theorems 2.1 and 2.2, we have proved that
the inequality

ey < cwo (h)h”

holds true for all 1 = 0(1)n and all k =0(1)N — 1.
3. Spline function approximating the solution.

In this paragraph we construct the spline function approxi- -
mating the solution of (1.1)-(1.2) and we prove the existence and
uniqueness of this approximate spline solution. Thus we introduce
the following theorem:

Theorem 3.1

Given a mesh of ponts

A10=z0<11<...<zk<$k+1<...<.‘BN =1
where,

Trt1 — T = h,k = O(I)N—

and sets of approximate values
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() _ — —
Y :yf,'),y(lt),..., x),t=0(1)n

then, there exists a unique spline function S, (z) = Sa (7(‘),:5)

interpolating the set Y" on A and satisfying the following con-
ditions:

(3.1) S(¥",z) = 84 (z) € C*[0,1],

(3.2) s (@) =7, 8V (zn) =7y

where t = 0(1)n,k = 0(1)N — 1 and for z; < z < z),,,
(3.3)

n o —(5) nt1
y y n
Sa(z) = Sk(z) = Z ;! (z—z) + z al*) (z — z,,)**
=0 p=1
where ai,k) are constants to be determined.
Proof

From the continuity condition (3.1), using (3.2) and (3.3) it
is easy to get

(3.4)
n+1
3 (P it —
p=1 t
where,
(3.5)
(%) o _NwY
F = h‘_"_l(gk+1 - Z =—h),

|
o I

)
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t =0(1)n,k =0(1)N—1,p = 1(1)n+1 and a*) are the unknowns
to be determined. The system of linear equations (3.4) in the
unknowns a*) has a unique solution since its determinant D # 0.
Here,

D=|d,]|, 4j=11)n+1,

n+)

dy =T -yw

and it is easy to prove that

D = pr(n+1)/2 Ht!

t=0

and this does not equal to zero since h # 0.
If we replace the p-th column in D by the column

(FMF® | F)T

and denote the resulting determinant by D” , then the solution of
the system (3.4) becomes

(3.6)

al*) = o P= 1(1)n+1
and after factorizing D* in terms of Fék) ,Fl(k) yooo ,F,(.k) , the so-
lution (3.6) takes the form

(3.7)

1
(k) — § : F(")
aP hp-1 Cpt L'y

t=0

where c,; are constants independent of h,k = O(1)N — 1, and
p=1(1)n + 1.
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The uniqueness of this solution guaratees the uniqueness of
the spline function S, (z) and xonsequently the existance of this
function and this completes the proof.

4. Convergence of the spline function to the solution.

Before we prove theorems dealing with the convergence of the
spline function constructed in theorem 3.1 to the exact solution of
the differential equation in consideration, we prove the following
lemma.

Lemma 4.1

The inequality

A
| a;(ok) |< h_:wo (k)

holds true for all p=1(1)n + 1 and k = O(1) N — 1, where A, are
constants independent of h.

Proof

From (3.7), we have
(4.1)

n

1
1< e S | BV
t

=0

Since the Taylor expansion of y(*) (z) at any point z = z,,, of A
is given by
(4.2)

not=1_(j+t)

(n)
(t) yk y y (€kt) o —t
Yer1 = —a—h' + T
k+1 P (n—t)
where, t = 0,(1)n,k = O(1)N — 1 and z; < &, < Zi,, then by
using (4.2) and (3.5), we get
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(4.3)
n—t (J+t)

|F¢(k) IS ht_n_l{el(:—:-l Z

(n) —y{™ | At
(n ) |y (ﬁkt) |h' }

Using Theorems 2.1 and 2.2 and the definition of modulus of con-
tinuity of y()(z), then (4.3) becomes
(4.4)

|F® (< e *"’°( wolh) 4 _o(1)n
where c; are constants independent of h.

Substituting form (4.4) in (4.1), we easily complete the proof of
the lemma.

Theorem 4.1

Let y(z) be the exact solution of the differential equation
(1.1)-(1.2) and let f € C([0,1] x R?). If S, (z) is the spline func-
tion constructed in theorem 3.1, then there exists a constant A
independent of h, such that

|y (2) = 8 (2) < Awo (R)h"~*
is true for all z € [0,1] and all ¢ = 0(1)n.
Proof

Using the Taylor expansion of y(*)(z), (3.3) and the definition
of modulus of continuity of y(*)(z), we get

n—t (5+t) 1

|y (z) — 80 (2) |< Z e"j' K + = t)'wo (R)R™~t+
j=0 ) ’
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n+1

ptn n-
+_ 87 7) af) [ Rt
p=1

Using Theorems 2.1 and 2.2 and Lemma 4.1, the above inequality
becomes

| ¥ (2) = 57 (2) I< e wo (R)R""
where ¢;* are constants independent of h and ¢t = 0(1)n.
Let A = max c;*, then we get

| ¥ (2) — 537 (2) < Awo (R)R"

where A is a constant independent of h and thus the proof is
complete.

Theorem 4.2
If §(A") (z) denotes the function

50 (2) = £(,5a (2), 5, (2))

where S, (z) is the spline function approximating the solution of
the differential equation (1.1)-(1.2) and constructed in Theorem
3.1, then the inequality

155 — 8 (2) |< M wo (k)

is true for all z € [0,1],, where M* is a constant independent of
h.

Otherwise,
lim 54" (z) = f(2,5a (2), 5, (<))

Proof
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We have
| 82 () — S (=) 1< 8 (=) — v () | +
+ |y (z) - S (2) |

Using the definition of 5\") this becomes

=| f(2), 8a(2), 5, () — f(z,¥(2), v (<)) | +
+ |y (z) - 5,7 () |

By using the Lipschitz condition (1.4) and Theorem 4.1, we get

| 50" (z) — 81 (2) |< (LAR™ + LAR™"! + A)w, (h)
< M* w, (k)

where M* is a constant independent of A and thus the proof is
complete.

5. Stability of the method for the n-th order differ-
ential equation.

In this paragraph, we are going to prove the stability of the
method for approximating the solution of the differential equation
in consideration and described in the previous sections. We begin
with the following definition:

Definition 5.1

If any of the calculated values 37,(:) is changed to i,(“) , where
t = 0(1)n, then the introduced error is defined by

e =2 — gl |,i =0(1)n.
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This change will impose a change, at any point z = z,, 4+,, in
the calculated values from §', , to 2\, |, where m = k(1)N — 1.
This leads us to solve
(5.1)

n—i-1 _(i+j)

[ Zm ;
2, =) =W+

P
T i

(n — ¢) times

Z:n.'(tn_,'))dtn_" e dt1
instead of (1.6) where 1 = 0(1)n — 1,

(5.2)
zr‘n (t) = ZT(t - zm)J’zm <t S T+
3=0
(5.3)
j-2 z(j+1) ]
Sl OEDY 7 (t—zm) +
3=0
t th-2
+ / s / f(tn—lsz:n (tn-l)az:n"(tn—l))'
(n — 1) times
Jdt,_,...dty
and
(5.4)
n-1 _(j+1) .
z(t) = 7 (t—zn),zm <t<zp,,.
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Also z,(nl , can be defined as

(5.5)
2,(:,11 = f(zm+la§m+1$§;n+l)‘

In the following theorems we prove that the error is a multiple
bound of the introduced error.

Theorem 5.1

If any of the calculated values y{" is changed to '(‘),i =
0(1)n — 1, then the inequality

s(%) (%)
m+1 = 241 " Ym+r |< u; €

holds for all m = k,k+1,...,N—1and+=0,1,...,N—1, where

e, = max{e.”,el), ... "7},

ef:) are the introduced error and u; are constant independent of
h.

Proof

By using (5.1),(1.6) and the Lipschitz condition (1.4), we get
(5.6)

n-i-1 (.+,) (J)

() n—s
<Yy = h’+LZ(J+n_')' hitnig

j=0

(J+1) n (7)

+L J+n—i+L2 - €m - hj+2n—i—1
Z(J+n—:)’ ;(J+2n—z—1)! M

n. ()
€ . R
L2 - m - h‘1+2"—'_2.
J_; (j+2n—1-2)
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Since  e) =| 2 —giP) |

then by using (5.5),(1.11) and the Lipschitz condition (1.4), we
get

(5.7)
er) < Le,, + Le,

By using (5.7), then (5.6) can be written in the general form as:
(5.8)

< 3w

where

(1 + q"jh) if 1=

g;h -t if 1<y

q,',‘h"—‘ if j=0,1 a-ndi>j
gi;h" -1 if 7>2andi >

w,-,- =

and ¢;; are constants independent of h.

If we use the Definition 2.2, then the inequality (5.8) for + =
0(1)n — 1 takes the following matrix form.

(5.9)
Vi1 < (I +hQ) ¥

where I, is the n-th order unit matrix, Q@ = [¢;,],1,7 = 0(1)n —

Wpyy = (€0 D) dmoiyr

m+1 m+1 m+1

and

v, =(€£:)€£r:) £:+11))T‘

The principle of the successive substitution implies
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Ymi1 < (L +RQ)Y
‘I’m (In + hQ) S (In + hQ)z ‘I’m-lv
\I’m—l (In + h'Q)2 S (In + hQ)a\I’m-—Z’

‘I’k+1(In + hQ)m_k (In + hQ)m_k-H‘I’k'

<
Hence
Y1 < (I +hQ)™ 1Y,
< (I.+ %Q)N Vi
< Y, =UV,
where

W, = (e .. " )T

and U is (nz1) matrix whose elements are constants independent
of h.

ie.:

(¥) *
€mi1 S U6y

where 1 = 0(1)n — 1,

* 0 1 -1
e, = max{e”, el ... "V},

Hence the proposition of the theorems.
Theorem 5.2
The inequality

(n) ) gn) e

-
m+1 1 ®m41 ~ Ym41 IS Up €
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is true for all m = k,k+1,...,N — 1, where u, is a constant
independent of A and

- 0 1 n—1
e, = max{el”, e, .. "7},

Proof

Using the inequality (5.7) and the results of Theorem 5.1, it
is easy to get the proof.

Theorems 5.1 and 5.2 imply
(5.10)
|22 — 3% IS we
which holds for allm = k,k+1,...,N—1andallt=0,1,...,n

Theorem 5.3

If any of the calculated values § ’( ) is changed to Ei‘) , Where

t = 0(1)n — 1, and consequently, the spline function approximat-
ing the solution of the differential equation (1.1)-(1.2), and con-
structed in theorem 3.1 is also changed from S, (z) to s, (z), then
for any z € [z,,.Zn41],m = k,k +1,..., N — 1, the inequality

Is(*)(z) S(')(z) |< u“ .

holds ture for all t = 0,1,...,n, where u** is a constant indepen-
dent of h and ¢, = ma.x{e(o) (1) (n 1)}

1€ -
Proof

The new spline function, due to the variation from y,(‘ ) to z ‘('
and using (3.3), will be

(5.11)

n o (d) nt1

Sm (7) = E —(-‘B -z,) + Z o) (z — z,,)P*"

=0 p=1
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and satisfying the following conditions, as of (3.1) and
(5.12)
sa (z) € c*[0,1],

(5.13)
) (zm) = 59583y (2n) = T -

For (5.11), (5.12) and (5.13), we get

(5.14)
. n—t _(5+t¢) n+1l
_ Zm : P+n m n-
2, =) i Ko+t . )b{m) pptn-t,
=0 p=1

The system of equations corresponding to (3.4) becomes
(5.15)

n+1 p+n
> e . )olm h?=t = G\™)

p=1

where t = 0(1)n and

(5.16)
(m) © _~za
G™ =Rzl =) T
=0

and analouge to (3.7), we get
(5.17)

From (5.11) and (3.3), we get
(5.18)
|83 (z) — S3)(z) <
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n—-t , _(7 (3 +1
|z2+t)__yg+¢)|hj n

p+n m m n-
3 GUITEEREITES

=0 j! p=1
From(5.17) and (3.7), we have
(5.19)

™) = afm) | = D e | G = B |

t=0

and from (5.16) and (3.5), we have

B L NN
n-t ) _(5+t) _ _(5+t)
2m —Ym l :
+3 ; K},

=0

Applying Theorem 5.1 and 5.2, we get

| Gs"‘) _E(m) |S u'e;h‘_"_l

where u* is a constant independent of A.
And so, (5.19) becomes

m m 1 . apton-
| (™) — alm) |< i Zc,,u eh—"L.

t=0

Thus, from Theorems 5.1, 5.2 and the above inequality, we get

n-—t

| 9(2) - 59 (2) 1< (3w o+

i=0

n+l n

p+n * * "k %
+EZt!( : Jepet' |6 < utteg

p=1t=0
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where u** is a constant independent of h.
Hence the proposition.

Numerical Examples.

In this paragraph we test our method, numerically, by the
following two examples:

Example 1.
yv'=y +1,2, =0,y =1,y, = 1.
The exact solution is:

y(z) =2 -z

The following table presents the results

Exact value | Numerical value | Absolute Error
(0.4) 1.5.836494 1.583642249 7.151FE — 6
'(0.4) 1.9836494 1.983601391 4.8009F — 5
& (0.4) 2.9836494 2.983601391 4.8009F — 5
Example 2.
y'=-y— 2.2 =0,y =1,y = -2,y; = 1.

The exact solution is:

y(z) =e* -2z

The following table presents the results
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Exact value | Numerical value | Absolute Error

y(0.4) 0.270320044 0.270320045 1.0F -9

’(0.4) —1.670320044| —1.670319999 45F — 8

E" (0.4) 0.670320044 0.670320328 2.84F — 7

"'(0.4) —0.670320044| —0.670320045 1.0F -9
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