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Abstract. It is a well known aspiration that aims to use those
methods exclusively which guarantee the correctness of the developed
program with respect to the posed problem. That is what made it es-
sential to find abstract mathematical definition of program, problem,
and solution. We investigate the properties of some relational oper-
ations, which are generally applicable in these mathematical models.
One of these studied operations is that which can be called the strict
composition of relations. It can be originated from the normal rela-
tional composition by restricting its domain. The program function of
sequential composition of nondeterministic programs is defined by the
help of strict composition. This operation is closely connected with the
constituting operation of the pre-image of a set, with respect to a given
relation. The latter operation comes from a concept of converse-image,
to define it in a more rigorous way. We describe a geometrical and ma-
trixaritmethical representation of strong composition and pre-image.
These representations make possible a paralell computing of program

function of the sequential composition following Bendarek’s and Ulam'’s
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ideas [ 2 ]. Finally, we investigate the properties of closure and bounded
closure of a relation. These operations are applicated to determine the
program functions of loops. We analyse the occurrent similar concepts
in the literature, investigate their connections to the closure and to the
bounded closure, and we try to generalize the theorems which deal with

the relationship between the closure and the bounded closure.

I. Introduction

The functions and relations play a central role in the math-
ematical models of programming. The relations are applicable to
the description of nondeterministic programs [ 17, 4, 19, 7, 14,
15 |. Relation means binary relation in the following.

We can imagine a program as a relation, which associates a
sequence of the points of the state space to the points of the state
space .

DEF.1. [ 7|. The relation S is called a program, if

i) SCAxA™",
1) Ds = A,
i) (a€ANa€S(a))=>a =a,
W) (@€RsAha€A)=>Vi(1<i<|a|):a # &),
v) (@€RsAha€A”®)=>
(Vi€ N (o = i1 — (Vk(k > 0) : o5 = ait1)))-

\

where A* is the set of the finite sequences of the points of the state
space, and A the set of the infinite ones. Let A** = A* U A®.
An important element of the above definition is that the domain
of the program is identical with the whole space of states. Note,
that the program is not necessarily a deterministic relation ! The
nondeterminancy is used in its widest meaning, as it occurs in
the literature. If the program associates both finite and infinite
sequences to a point of the state space , then neither the infinite
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sequences are more preferable to the finite ones, nor the finite
sequences are to the infinite ones [ 6, 10, 4 |.

The problems are given in the form of a relation : F C A X A.
To determine, if a program is correct with respect to a problem
(specification), we introduce the concept of the program function:

DEF.2. [ 7]. The program function of the program S is
the relation p(S) C A X A, if

) Dys)={e€A|S(a) C 4%}
it) Va € Dys):p(S)(a) ={b€ A|3a € S(a) : 7(a) = b},

where 7 : A* — A is a function, which associates its last element
to the sequence a = (ay,....,a,), ie. 7(a) =a,.

A similar concept, called indeterministic programrelation oc-
curs in Mills’s work | 16 |.

DEF.3. [ 7]. The program S is correct with respect to
problem F, ( or with other words : the program S is a solution
of problem F) , if

”) DF g Dp(S)’
1) Va € Dr : p(S)(a) C F(a).

The finite sequences of the points of the state space are more
preferable to the infinite ones, if we have a closer look at the
above definitions of the program function and of the correctness
(or solution). Therefore only those points are the elements of the
the domain of program function of the program, which only finite
sequences are associated to. It means that the Dijkstra’s demonic
model of nondeterminacy is applicable to determining program’s
correctness with respect to a problem [ 4 |.

It is necessary to be familiar with the program functions of
the program constructs, to prove the correctness of a complicated
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program with respect to a difficult problem . First we should in-
vestigate the program function of sequential composition of pro-
grams.

DEF.4. [7]. Let S,51,52 C A x A** programs. S called
the sequential composition of S1 and S2, S = (S1;S52), if

Vaec A:S(a) ={a€ A* | a € S1(a)} U
{x(@,8) | a € S1(a) N A* A B € S52(r(a))}

where the sequence x(a,8) comes from the concatenation of
a and B, substituting all those finite subsequences which consist
of the same elements, with one of it’s elements. ( Since the last
element of the first sequence is in this case identical with the
first element of the second one, they may constitute a length 2
subsequence of identical elements. This subsequence has to be
replaced by one of it’s elements. )

The simple composition of program functions does not give
the program function of the sequential composition. (The sim-
ple composition is only applicable to deterministic programs | 17,
15 ].) Let us examine the following example : the program func-
tion of the first program associates two points to an z point of the
state space. One and only one of these two points is an element
of the domain of program function of the second program. That
means z is not an element of the domain of the program function
of the sequential composition, but z is an element of the domain
of the simple composition of the program functions. A solution
for this problem can be that if we define a stronger version of
the composition of relations. Let us consider those points a of
the domain of the first relation to which the first relation asso-
ciates (also) some point b not in the domain of the second relation.
We just have to exlude such a’s from the domain of the stronger
version of the composition:
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DEF.5. : Strict composition of relations: P C A x B,
QCBxC

QO P ::= {(a,c) | P(a) C Dy AIbE B:(a,b) € P A
(b,¢) € Q}.

Indeed, it is easy to prove, that p(S1;S2) = p(S2) ® p(S1) .

Mili restricts the domain in his definition of the program
function of the sequential constructs in the case of determinis-
tic programs | 14 |, Berghammer and Zierer does so in the case of
nondeterministic ones similarly [ 4 ]. Mili, Desharnais and Gagné
make a more rigorous restriction in an other paper in the sequence
statetment rule [ 15 pp. 244. |. Their requirement is the following:
the set of the points associated to an arbitrary point of the do-
main of first relation has to be a part of the domain of the second
one.

Let us investigate the properties of the new relational opera-
tion !

II. The properties of the strict composition :

Notations : A,B,C, D are arbitrary sets, H,G, F are rela:
tions over these sets :

HCAXxB,GCBxC,FCCxD
A) Statement : If a is an element of Dg,y N Dgox then
GoH(a) = G © H(a).
B) Statement : Dgon C Dgon

C) Statement :(Va € Dy : |H(a)|=1) => GO H = GoH
D =B =GO H = GoH.
( All of the three statements can be concluded directly from
the definition of the strict composition. )
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Remark 1. : If at least one of the two relations is a function
itself, then the strict composition gives the same result as the
simple composition. ( We require that a function should be defined
in all points of the base set.) O

D) Statement : The strict composition is an associative
operation :

(FOG)oH=Fo(GoH)

It will be sufficient to show that the domains are the same, because
A), B) and (FoG)oH = Fo(GoH) holds.

On the one hand a is an element of the domain of the relation
on the left side if and only if

1) a)aEDg
b) H(a) Q DpoG, ie.:
H(a) C Dz A Vbe H(a) : G(b) C Dr,

on the other hand a is an element of the domain of the relation
on the right side if and only if

2) a) a € Dgon, ie.:a €Dy ANH(a) C Dg
b) (GO H)(a) C Dp, ie.:Vbe H(a):G(d) C Dr

Comparing 1) to 2) follows that a is an element of the domain of
the relation on the right side if and only if it is an element of the
one on the left side. O

Remark 2.: In consequence of the above statetment the
relations over A X A construct a semigroup in respect of strict
composition operation, where A is an arbitrarily given base set.
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The following statement expresses, that this semigroup has an
identity element.O

E) Statement:
N1I'CAxA: (VRCAxA: (RO1'=R A 1I'"®OR=R)).

The uniqueness follows from the fact that the relation 1’ [ 21 |
is left sided and right sided identity element at the same time [ 9 |.

I'={(a,b) |a=b A a€A}

Since 1’ is a function, it is sufficient for us to consider the
case when all occurences of the strict composition in statement
E) are substituted by the simple composition. ( See remark 1. )
It is known, that the relations over A X A construct a semigroup
with respect to simple composition, and the identity element is
exactly the relation 1' [ 21 ]. O

After the identity element has been found, the question is
raised immediately : which relations have got an inverse , i.e. to
which relation R can be found such a relation RR, as :

a) RORR=1 and B) RROR=1Y

If a relation has an inverse, then the uniqueness of this inverse
is known [ 9 |.

If the a) equation is true, then RR is defined in all points
of A, since the domain of the strict composition is a part of the
domain of the relation applied at first. It similarly follows from
B), that R is defined in all points of A.

From the above line reasoning, it follows that we can apply
the statement C) again, i.e. it is sufficient for us to consider the
case when all occurences of the strict composition in a and 8 are
substituted by the simple composition. It is known, that only and
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all the permutations have an inverse with respect to the simple
composition from the relations over A x A [ 9 |. Hence:

F) Statement: Only and all the permutations have an in-
verse with respect to the strict composition from the relations over
A X A, and this inverse is unique. The permutations construct a
group with respect to the strict composition.

The statements D),E) and F) are analogue with the state-
ments concerning the simple composition | 13, 21, 20 |.

Let us investigate the connection between the strict compo-
sition and the other relational operation !

Def.6.: [ 21 |

Let R,SCAxB , R-Y C Bx A.
The complement of S is S := {(a,b) | ~((a,b) € S)}.
The converse of R is R"") ::= {(b,a) | (a,b) € R}.

The Schroder-rule does not hold in the case of the strict com-
position ( although this rule can play an important role in the con-
struct of the axiomatic relation calculus), nor does the Tarski-rule
[20,13].

QoRCS & Q"YoSCR & SoR-YCQ
(Schroder — rule)
R#0 = LoRoL=1L,where L=AXx A
(Tarski — rule)

The example 1 is a counter-example for both rules ( for the case
of the strict composition ).
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Example 1.:

A={1,2}, R,S,QC Ax 4,

Q@ =R={(1,1),(1,2)},5 = 0.

Hence

QORCS, butQ"Y®S¢Z Rand SOR-Y ¢ Q
aswellas R#0 and LOROL =0.

G) Statement: ( monotonicity ) :

a) RCS => ROQCSOQ
b) but RCS => QORCQ®S does not hold.

Proof :

a) Droq C Dsoq , because if a € Droq ,then a € Dg A
Q(a) C Dg ,since Dy C Ds therefore Q(a) C Ds holds,
hence a € Dspq.

From the statement A) and the monotonicity of the simple
composition | 20 | it follows : if the domain of R® Q is a part
of the domain of S® Q, then RO Q C S ® Q is valid, too. O

To prove the statement b) we show a counter-example :
Example 2. :
A=B=C={1,2}, RRSCAxB,QCBxC,
§={(1,1),(1,2)}, R={(1,1)}, @ ={(1,1)}.
Hence : QO R={1,1}, Qo S =0.

It is not surprising, that the often used connection between
the simple composition and the constitution of the converse rela-
tion does not hold in the case of the strict composition.
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H) Statement: f HCAXxB,GCBxC, then

(GoH)(=Y =H(YoG-1 [21], but
(G@H)("l) £ HY oG-

The first part of this statement is well known from the liter-
ature. To prove the second part we show a counter-example:

Example 3. : Let a€ A, b,,bb€B, ceC

HC AxB, H={(a,b),(a,b;)}
GCBxC,G={(b,e)}

Hence GOH =0, (GoH) ™ =9
GV = {(e,b)}, H"Y 0 GV = {(c,a)}.

If substitute all occurences of the converse-image by a stronger
version of this operation, then we get a statement, wich holds. We
introduce for this statement the concept of the pre-image.

Def. 7. : [ 8] The set H ' (Y) called the pre-image of Y
with respect to relation H, if

HCAXxB,YCB,Tu:=24,L:=2"
H'(Y)={a|a€ Dy AH(a) CY}

Remark 3. : H™! C ¥ x I is a function (the pre-image
function of H). O

Remark 4. : Let us suppose a problem is described by its
pre- and postcondition (Q, , Ry) [ 7] . In this case the truth set
of the weakest precondition with respect to R, postcondition is
computable by the help of the pre-image, if the program function
is known. ( The truth set of the weakest precondition is the largest
set, whose elements only finite seqeuences are associeted to, and
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the postcondition is true in respect of the last elements of these
sequences. ) :

[wp(S, Ry)] = p(S)"*[Rs]. [8].D

J) Statement ( the connection between the strict composi-
tion and the pre-image ) :
If HCAXxB,GCBXxC, then
VY CC:((GOH)'(Y)=H'0G'(Y)),

Proof:

I. First let us execute equivalent transformations on the right
side of the equation :

H'OG '(Y)=H 'oG*'(Y), since H"!,G™" are functions.
G '(Y)={b|be BAGD) CY Abe Ds}
H 'Y (G '(Y))={a|a€Dy A H(a) C G7'(Y)}
(H(a) CG™'(Y))=Vbe H(a) : (G(B) CY AbE D) iee.:
H Y (G ' (Y)) ={a|a€ Dy AVbE H(a) : (b€ Dz AG(b) CY)}

II. Let us execute equivalent transformations on the left side
of the equation, too :

(G@H)"(Y)—{a|aeAAG®H(a)gY/\G@H(a);é@}
H(a) #0 = a€ Dy ANH(a) C D¢
(G@ (a,)CY/\H(a)CDG)
= Vbe H(a): (bEDs AG(b) CY) ie.:
(GOH) ' (Y)={a|la€ Dy AVbE H(a) : (b€ Dz AG(b) CY)}

Hence the sets on the left side and on the right side of the
equation are the same, for an arbitrary Y C C. O
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Remark 5. : (GoH)™' # H 'oG™'.O

The example 3. is a suitable counter-example again. Let the
set Y = {c}! Hence:

(GoH)™*(Y) = {a},
G_l(Y) = {bl}a
HYG'(Y)) = 0 .

Remark 5./a. :There is not possible to correct the Schréder-
rule substituting converse-image by pre-image. O

Remark 6. :The semantics of the sequential composition is
definiable by the following equation, (the properties of the weakest
precondition are choosen as axioms) [ 6, 10 |:

wp(S1;S2, R) = wp(S1,wp(S2, R)).

This equation is equivalent to the statement J). O

III. The representation of strict composition by matrices
and on geometrical way:

Def.8. : [ 5,1 ] Let A = {a,,0;,...,a,} a set with n-
element, B = {b,,b;,...,b,, } a set with m-element, R C A x B
a relation. The Mp € L,.x,. - matrix is called the incidence
matrix of R (where £ = { true , false }) , if

4. | true, if (ax,b;)ER
Mgk, 5] := { false, otherwise .

According to Copilowish’s paper the operations of Boolean
algebra are choosen for the basic operations of the matrixopera-
tions.( In this case the elements of the matrices are logical values,
therefore the operations ’+’ and ’*’ over them means logical ’OR’
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and ’AND’.) Comparing with the choise of integeroperations it
simplifies the description of notions.

The incidence matrix of the simple composition of two rela-
tions can be computed by the matrixmultiplication of the inci-
dence matrices [ 5 | :

Let A={a;,as,..,a,}, B={b,bs,....0n},
C ={c¢1,¢2,..s¢,}, RCAXB, GCBxXxC,
then MGOR = (MR *MG') .

Let us constitute the column vectors D; € L,, and Dgor €
L, to compute the incidence matrix of strict composition :

q
DG [J] = ZMG [.7’ S]
e=1
D¢ lj] = true, if and only if b; € D¢

Let the column vector Dgor € L, be the following :

Dooslk] = [[(Malk,3]  Dels)-

i=1

Dgorlk] = true, if and only if (ax € Dgor V ax ¢ Dr).

The incidence matrix of the strict composition can be ob-
tained in two steps, first by constituting the incidence matrix of
simple composition, second multiplicating the elements of its rows
by that element of column vector Dg o r Which has the same index
as the columnindex of the matrixelement :

Mgorlk,j] = Mgor(k,5] * Dgor(k]. ie.:
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Mgorlk,5] = (Mg * Mg)[k, 5] * H Mp [k, 1] - ZMGU s]).

=1

Remark 8. : Let Y C B, let us define the H, € L,, and the
Hp -1 (y) column vectors as it follows :

7] = true, ifb; €Y
v ] false, otherwise .
Hp-s () (K] := [] (Mz[k,5] — H,[5])
=1

Thus : a; € R-I(Y) <~ HR-x(y)[k].

We can conclude from the similarity of the computing method
of the two operations that there is a strong connection beetwen
the strict composition and the pre-image. This strong connection
is also expressed by the statement J). O

Remark 9. : It is theoretically possible to compute the image
of every single point with respect to the strict composition and
the pre-image, in the case of finite sets, if a relation is represented
by a matrix and a set is given by a vector. Thus the program
function of the sequential composition and the truth set of the
weakest precondition are computable by the help of matrix- and
vectoroperations. Since the strict composition is an associative
operation, the program function of a large sequential program
can be computed parallel by the help of the recursive doubling
technic [ 18 ]. O

A possible geometrical representation of the simple composi-
tions of relations and other relational operations is made known
by Alfred Tarski [ 21 |: Let F,G C R x R , where R is the set of

real numbers. Let us get a co-ordinate system on the plain S, with
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real axes, let the axis £ perpendicular to the axis y. Associate the
set of points P and Pg to the relations F,G :

Pr:={weS|w=(z,y) A(z,y) € F}
P;:={weS|w=(z,y) A(z,y) € G}

We search the set of points P;,r, according to the definition :
PGor = {w €S | w= (.’B,y) A (:z:,y) € GOF}

Let us rotate the set of points Pr into Pr* and the axis y into yx
around the axis £ with 90 grades. Let z,y and the rotated y (y*)
constitute a right-handed co-ordinate system. Let us rotate the
set P; and the axis z around y similarly into Pg* and z*. At
this time zx = y* = 2. Let us draw perpendicular lines to all
points of Pr* and P *, let us project their cross points onto the
plain S. The constructed set is Pg,r.

To get the set of points Peor 1= {w € S | w = (z,y)A(z,y) €
G © F} the above algorithm must be modified. The construction
has to be started from a subset of the Py * instead of Pr*. Let
us consider only those lines which are paralell with z and the
perpendicular projection of its intersection with Pr* to 2z is not a
part of the perpendicular projection of the set of the points P *
to the 2. Let us exclude those points of Pr % from Pr * which are
incidental to a line described above.

The geometrical representation of the pre-image of a set with
respect to a given relation can be determined similarly.

Remark 10. : The above algorithm of Tarski and the ax-
ioms of McKinsey’s complete atomic relation algebra attracted
the attention to the connection between the calculus of relation
and the projective geometry which is recorded as the algebrian
version of mathematical logic | 3, 20 |. Bendarek and Ulam think
the paralell computing of the composition of relations possible on
the basis of the above projective algorithm of Tarski | 2 |.0
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IV. The closure and bounded closure of relations :

Not only can the program function of sequential composition
be computed by the help of the program function of its compo-
nents, but the program function of a loop is computable on the
basis of the loop condition and the program function of the body
of the loop by the help of introduction of more complicated rela-
tional operations.

The program function of the body of a loop is modified ac-
cording to the loop condition firstly by restricting and suitably
extending its domain to the truth set of the loop condition. After
that the closure of the obtained relation has to be determined | 7 |.

Def. 9. : Let R C A x A. The infinite sequence (a0, a,,....)
can be called the infinite point-chain of relation R and denoted
by Lg(ae,a,,...), if

Vke N :a, € R(ax-,).
a, is called the start point of the point-chain.

Def. 10. Let R C A x A. The sequence (ao,4,,..,a,) can
be called length q point-chain of the relation R, and denoted
LR (ao Qg ..aq), if

g € No AVk € (1,9 : a, € R(ax_,)

a, is called the start point of the point-chain. If a, ¢ D ,
then a, is called the end point of the chain. In the case of an
arbitrary relation R C A X A and an arbitrary point a, € A the
sequence (a,) is a Ly (a;) length O point-chain at the same time.

Def. 11.[7] Let RC A x A. The R C A x A relation is
called the closure of relation R, if

D-={a|a€ AA-(3Lg(a,a,,...):a=ao)}
R@)={b|be AA~(be Dp)A
JLg (a0,a,,..0,) : (b=a, Aa=a,)}.
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We can formulate a more rigorous restriction of the domain :

Def. 12. [7]Let RC A x A. The relation R C A X A4 is
called the bounded closure of the relation R, if

P=={a|a€ AA3n(a) € N, : Vg > n(a) :
(VLR (@0,@14.y8q) : @ # ao)},
R(a)={b|be AA(be Dg)
A 3Lg(a,a;,..a;) : (b =a, Aa=ao)}.

Hence the elements of the domain of the closure of R are
those elements of the base set A which are not start points of any
infinite point-chains of R. The domain of the bounded closure of
R is a smaller set. All the points are excluded from this which are
not start points of any infinite point-chains, but the length of the
sequences starting from it have not got an upper bound. Both the
closure and the bounded closure associate those points to a point
of their domains which are end points of the point-chains starting
from the given point. (The length of the point-chain may be 0!)

Remark 11. : There are several similar definition in the
literature. Mills defines the closure of functions similarly to the
definition above of bounded closure [ 16 ]. Schmidt associates an
oriented graph to every relation (the point-chains are the paths
of graphs), and defines the progressively finite and progressively
bounded graphs. If a graph is progressively finite, then the do-
main of the closure of the corresponding relation to the graph is
identical with the domain of the relation. (The so called initial
part of a graph, the I(G) contains the vertices which correspond
to the elements of the domain of the closure.) There is a simi-
lar connection between the bounded closure and the progressively
bounded graph. Schmidt gives an example that the two concepts
are not the same generally. He proves that if the relation is de-
terministic then the two concepts are identical [ 19 |. Schmidt’s
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these concepts are corresponding to Mili’s two ones. The nonin-
finitely decreasing relation corresponds to the one, whose domain
of closure is identical with the domain of the relation. Mili defines
also the concept of the relation whose domain of the bounded clo-
sure is identical with the domain of the relation. Mili concludes a
false statement saying the two concepts are identical in every casc
[ 15 |. The concepts of the transitive closure and reflexive transi-
tive closure of the relations occur several times. These concepts
are only related to the closure and the bounded closure but are
not identical with them. O

Remark 12. : In practice we construct our programs only
from those loop bodies and loop conditions which hold the state-
ment that when we restrict and similarly expand the program
function of the loop body to the truth set of the loop condition,
then its bounded closure and closure (i.e. the program function
of the loop ) are indentical. This follows from the inference rule
of the loop [ 6, 7 ]. That is why the relationship of these two
concepts is essential for us. O

V. The connection between the closure and bounded
closure of relations:

Let R C A x A. Hence

A) Statement: If a is an element of DN D= then
R(a) = R(a).
B) Statement: )= C D-.
R

Both statements follow directly from the definitions.

C) Statement: If the set A is finite, then R = R .
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The length of every finite point-chain is not larger than the
number of the elements of the set A. Hence the number of the
elements of A is an upper bound for the length of every finite
point-chain. O

D) Statement: If A is a countable infinite set, then
JRCAxXA:R+#R.

Proof: The countable infinite sets are isomorph, so it is enough
to show an example for a special concrete A [11 |. Let A =N, ,
R C N, x N, ,and

b|b>1}, ifa=0
R(a):z{iai——l},} if a> 1.

DEZNOa D’E—z{alazl}'

Hence 0 is not an element of the domain of the bounded closure
of R, but it is an element of the domain of the closure of R. O

In the previous proof |R(0)| = co. If foralla € A : R(a) is
finite, then the situation is openly other.

E) Statement : If A is countable infinite, R C A x A, and
Ya € A: R(a) is a finite set, then R = R.

Proof : Let us apply the sequence of ideas which is found at
the proof of Konig lemma [ 12 |. We have to construct an infinite
oriented graph first ( a similar one occuring in [ 19 ] ) :

Let the number of element of the sets A;, Az,..., Ak, Ax+1,..
be equal to the number of the elements of set A, and g¢,,9z,...,9x,
gk+1,-- is an infinite sequence of relations. Denote the elements
of Ay by @x,0,0k,1,8xk 258k, ry8k r+1,.- - We require that

VkeN'gk gAk XAk+1
Ak>1— ((ak.m>@k+1,n) € gk € (@m,as) € R)
ANk=1- ((a1,m,02,n) © ((@m,a.) € RAa, € D))
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Let the points of the set (UA,) correspond to the vertices of
an oriented graph in a one-to-one manner . Denote every vertex
by the identifier of its corresponding point of the set (UA.). Let
us lead an edge from vertex a; ,, to vertex a,,,, , if and only if
(ak,m y Ak + l,n) € 9k .

Let us investigate the case when the domain of the closure of
R is not empty. ( If it is empty, then the statement is obviously
true.) Let us choose an arbitrary point a, of the domain of R.

Denote that connected part of graph by RL, which a path
from a,, leads in. ( Remark : RL, contains the paths corre-
sponding to those point-chains of relation R whose start point is
a, .)

Let us suppose in an indirect way that RL, contains infinite
pieces of verteces. That means a, . has infinite pieces of descen-
dants ,but since the number of its successors ( immediate descen-
dants ) is finite, ( following the condition with respect to relation
R) that is why at least surely one exist among them which inher-
its that property of a, . that it has infinite pieces of descendants.
By the help of this sequence of ideas we can construct an infinite
path starting from a, , .

But a, is an element of the domain of the closure of the
relation R, hence a, . cannot be a start point of an infinite path!
It means that the number of the verteces of RL, is finite. It is
necessary that there is at least one vertex among a finite number
of them, whose first index is maximal. The value of this index is
an upper bound for the point-chains starting from a, , thus a,
is an element of the domain of the bounded closure, too. Hence
the domain of the closure is a part of the bounded one. On the
basis of V.A) and V.B) we can conclude, that the closure and the
bunded closure of R is the same. O
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