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Abstract. A double Chebyshev spectral method for the solution of
Poisson's equation in a square subject to the most general mixed boundary
conditions, based on the relation between the Chebyshev coefficients for the
solution and those for the right-hand side, is developed. The linear system
of equations for the expansion coefficients is greatly simplified by using the
Kronecker matrix algebra. The accuracy and efficiency of this Chebyshev ap-
proach compare favorably with those of the standard finite-difference meth-
ods. The extension of the method to Helmholtz equation is also described.

Efficient evaluation schemes for function values and derivatives are also pre-

sented.

1. Introduction

Many physical problems require a numerical solution of the
two-dimensional Poisson’s equation. On rectangular domains, the
fast Poisson solvers provide a rapid solution of the standard five-
point difference approximation to the partial differential equation
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(See, for instance, Vichnevtsky (1981), and the references given
there). The resolution of these methods is limited by their al-
gebraic convergence, i.e., provided that the solution of the con-
tinuous problem has continuous and bounded fourth order partial
derivatives, the maximum error of the discrete approximation with
N + 1 grid points in each direction decays as 1/N2.

A fourier method for solving numerically Poisson’s equation
in a rectangle subject to inhomogeneous Dirichlet boundary con-
ditions is discussed by Skollermo (1975); the method based on the
relation between the fourier coefficients for the solution and those
for the right-hand side of the equation being solved. The fast
fourier transform is used for the computation (cf. The reviews of
Dorr (1970) and Swarztrauber (1977)). The method is shown to
be second order accurate under certain conditions on the smooth-
ness of the solution. The accuracy of this method is found to be
limited by the lack of smoothness of the periodic extension of the
inhomogeneous term.

Spectral methods involve seeking the solution to a differential
equation in terms of a series of known smooth functions. They
have emerged as a viable alternative to finite difference and finite
element methods for the numerical solution of partial differential
equations. The essence of the spectral approach is the expansion
of the solution into a truncated series. The convergence of this
approximation is governed by the rate of decay of the expansion
coefficients. The order of magnitude of these coefficients can be
estimated by repeated application of integration by parts. If the
basis functions are suitably chosen, the boundary terms from each
integration by parts will vanish and thus one power of 1/n will be
added to the estimate of the n-th coeffcient. If the solution is in-
finitely differentiable, then the expansion coefficients will decrease
faster than any finite power of 1/n. Thus, the error made by re-
taining only a finite number N of the terms of the series will itself
decrease faster than any finite power of 1/N, which means that
the convergence of the spectral approximation will have an expo-
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nential rather than an algebraic character. On the other hand,
if the solution has only a finite number of derivatives, then the
spectral approximation is expected to converge algebraically like
some finite power of 1/N.

Chebyshev polynomials - as a basis in the spectral expan-
sion - have been used in the solution of differential equations by
many authors, including, for ordinary differential equations, Lanc-
zos (1957), Clenshaw (1957, 1962), Clenshaw & Elliot (1960), Fox
& Parker (1972), Snell (1970), Boateng (1975), Morris & Horner
(1977), Horner (1980), and for partial differential equations, Elliot
(1961), Scraton (1965), Mason (1967a, 1967b, 1969, 1984), Knibb
& Scraton (1971), Dew & Scraton (1973, 1975), Knibb (1975),
Doha (1979, 1983, 1984, 1989), Maday & Quarteroni (1981) and
Tal-Ezer (1989).

Poisson’s equation in a square with homogeneous and inho-
mogeneous Dirichlet boundary conditions have been considered by
Gottlieb & Orszigh (1977), Haidvogel & Zang (1979) and Horner
(1982).

In the present paper we develop a spectral method based on
an expansion in doubly Chebyshev polynomials for solving Pois-
son’s equation in two-space variables in a square subject to the
most general inhomogeneous mixed boundary conditions. Some
important results about functions of one and two variables in
terms of Chebyshev polynomials are given in Sec.2. The formu-
lation and derivation of the method of solution is described in
Sec. An alternative method of solution is explained in Sec.4; the
extension of the methods to Helmholtz equation is noted at the
end of this section. Several numerical results and comparisons are
discussed in Sec.5. Some concluding remarks are given in Sec.6.

The motivation for adopting this approach is that it provides
one with a semi-analytical solution which not only compares favor-
ably to other analytic type methods but also has some advantages
over the solution obtained by using the standard finite difference
and finite element methods. Some of these advantages are :
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(i) Once the expansion series is known, the values of the
solution and its derivatives can be found globally and
not restricted to points of a grid as in the finite difference
methods.

(ii) The mathematical features of the proposed methods fol-
low very closely those of the differential equation be-
ing solved. Thus, the boundary conditions imposed on
the methods of solution are normally the same as those
imposed on the differential equation.In contrast, finite
difference methods of higher order than the differential
equation require additional boundary conditions. Many
of the complications of finite order finite difference meth-
ods disappear with the infinite order accurate semi- an-
alytical methods.

(iii) If the solution is infinitely differentiable, then the pro-
posed method has the property that its error goes to zero
faster than any finite power of the number of retained
modes. In contrast, finite difference and finite element
methods yield finite order rates of convergence. The im-
portant consequence is that the proposed methods can
achieve high accuracy with little more resolution than is
required to achieve moderate accuracy.

2. Some important results about functions of one and
two variables in terms of Chebyshev polynomials

Let the function f(z) and its derivatives f(1), f(2) ... be ex-
pressed as uniformly covergent series in the form

(=]

f® (= Z dMT(z) k=0,1,2,.. (1)

where a.gk) are constants, with the superscript to indicate the

order of the derivative f(*)(z); here }_' denotes halving the
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first term in the series. Then the coefficients in the series for suc-
cessive derivatives can be related by

(k) (k) (k- 1)
a,_, — %, “2“” (2)

when ordinary differential equations are solved in Chebyshev se-
ries, the general equation (2) can be used with another equation
derived from the particular equation being solved, in order to find
the coefficients in the series solution, (see Clenshaw (1957), Horner
(1980) and Wimp (1984)). In Sec.3, it is seen how these ideas can
be extended to certain partial differential equations.

Following Clenshaw (1962), Smith (1965), Hunter (1970) and
Horner (1980) the following formulae can be found to evaluate the
finite sum

Z aﬁ"’T.- (z) representing an approximation to f *) ().

With b£+i) = ;ar, r=0,1,2,...,n ]

let bf‘?z k bﬁ.kll k=0

and calculate (3)
b*) = 2p* Y 4 2zb®) b r=n—k,..1,0

Then S (:z:) (b(") b.y’)), k=0,1,...,n

=

Analogous results are now given for functions of two variables.

Let the function f(z,y) be expressed as a uniformly conver-
gent double series of Chebyshev polynomials in the form

,y)=f: i ais T ()T, (0) - (4)
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Basu (1973) refers to series (4) as a bivariate Chebyshev series
expansion. The double primes in (4) indicate that the first term
is iaoo ; @no and a,, areto be taken as %amo for m>0,n>0
respectively.

Now if we write

= Z a;;T;(y), ¢; = Z a;; T; (z) ,
=0 =0

then (4) can be interpreted

fa,y) = f: bTi(z) (5)

o few) =Y Ty Q

Basu gives the two-dimensional analouge of (3), with k =
Using his notation, results for function and derivative values are
given below. Thus, as in (5), let

n

S=Sm,,(x,y)=z z a;; T;(z)T; (y Z ;T (z)

where b; = E a;)T;(y) -

=0

Let
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Im+2 = Gm+1 =0, and ds,n+2 = di.n+1 = OJ
d;) = a;; +2yd; ;11 —dij42, J =n,..,0
1
b, = E(di.o — di ) i =m,..,0. (7)
g =b +2zxg;1 — gis2
1
then S = Sn,.(z,y) = 5(90 - g3)

Alternatively, as in (6), let S = S,,,(z,y) E T;(y) ,
where ¢; = E a;; T;(z
=0
Let
gﬂ+2 = gn+1 = 0, a.nd dm+2.j = 1,5 — 0,-
d'.-J = alJ + 2zdl'+1.j - dl'+2,j, i = m, .-.,0
1
¢ = E(do i —d2j), j=n,..,0. (8)
9; = ¢ +2YG5+1 — Gi+2,
1

then § = 8, (2,5) = 3 (60 — ).

In calculating S, either of (7) or (8) is satisfactory. In the for-
mulae below, the results are extended in order to evaluate deriva-
tives, with the work based on (7). If we write

g(p o _ 1 9"t g (pra) _ __1__ ot b,
i 7 plq!' dzroye ’ : plq! Ozrdys ’
(pg) _ 1 9°79d;;

6. ’

plq! dzrady*
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then differentiation of (7) leads formally to the set of equations

giyf::; = gf:fi =0, dz('.pv;:—)z = d'('.pr;:—)l =0, |

dP9 — 94(re-1) + 2yd{p.¢) — 4"
)

.5+ 1 "j+1 "j+2 ’
Jj=n,..0
(pa) _ L1/ (pa) _ (poa) i=m,..,0 (9)
b.'pq - E(d.',poq _d.'.pzq ), N

gfp,q) — b‘(p.q) + 2g§i-;1,q) + 22:951':) _ g.f:,:)’

1
S(pa) — 5(g(()v.«) _ ggp.c))’

where

S(pa) —

1 #*tif(z,y)
plq! OzPlyr

Moreover, (d;;) and (b;) are independent of z, and hence
for p > 0, the above become

o) = o2l =0

!p.q) (p—1 (ra) _ (p.a)

9,7 =297 9 +2zg>V — g%y, i=m,..,0 (10)

1
Sra) — 5(g(()p.q) _ ggp.q))
leading to all derivatives, including mixed derivatives, involving
differentiation with respect to x. Obvious similarities exist be-

tween equations (3) and (10).

In these formulae, the various derivatives are found by let-
ting p,q =0,1,..., with the convention that
" 1

0,0 0,0 0,0 —1)=
0" =g5 &V =di; bV =b; &707 = Zay;

D =g =0 (p>0)
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With p # 0, equation (10) leads to all derivatives expect
those purely with respect to y. These latter derivatives with p =
0, ¢ > 0, can be obtained through the general scheme (9) above.
With p,¢ =0,1,2, the results (7), (9), (10) will be used to find
function and derivative values, following the solution of second
order partial differential equations.

3. Derivation of the method of solution

In this section we develop a method based on an expansion
in Chebyshev polynomials for solving Poisson’s equation in two
space variables, namely

0%u u
— —-1< <1 11
azz ay2 f(x’ y) 1 — I,y — ( )

subject to the most general inhomogeneous mixed boundary con-
ditions

du ]
axu'f'ﬂlé-:’h(y) z=-1

az ~1<y<1 (12)
wutfo=my) z=1 |

du )
asu'f‘ﬂag“:'h(z) y=-1

az ~1<z<1 (13)
a4u+ﬂ4é—y:%(z) y=1 ]

It is assumed that the solution to the above problem can

be expressed in a uniformly convergent double Chebyshev series
expansion

u(z,y) = Z f. w ()T (v) (14)
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where the polynomials T, (z) can be expressed as
T (z) = cos(mcos™ ' z)

Throughout this paper we assume that there is no discon-
tinuity between the boundary conditions at the four corners of
the domain of solution. We also assume that f(z,y) has known
bivariate Chebyshev series expansion

=§: f: Tn (2)Ta (y)

which is uniformly convergent in —1 < z,y < 1. It then follows
that the solution (11) has a double series expansion of the form
(14), and the solution is free of discontinuities. (The case in which
discontinuities are present at the vertices (+1,+1), can often be
treated by a method similar to that described by Knibb & Scraton
(1971) in the solution of parabolic partial differential equations in
Chebyshev series).

Now, let us assume the following expansions

62u o0 o0 -
=Y Y EOTEn
; : (15)
ou al0:?
dy? Z Z T I)T" (y)
where o, denote the Chebyshev expansion coefficients

of (8°*%u)/(8z°8y?). It is noted here that the sets of coeffi-
cients {al?;)'},{a!%?)}, are constants and same significance in

their respective series the sets of coefficients {af '} in the series
(1). Now, if we satisfy the differential equation (11), we get

af,?;o) + af,?f) =fmn mn>0 (16)
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and applying equation (2) to the series coefficients for the partial
derivatives with respect to z, twice gives

a :(fm_z‘" _G'f:'—zg,n) _ ( fmn as'?:) ) +
" 4m(m — 1) 2(m —1)(m + 1)
fm+2|" _asjl)::;n
' >2, n>0
(mmen ) ™22 n2

which may be written in the matrix form

U + ZAm.a‘“’ ZAm.f,,. m>2,n>0 (17)

=0
where
cm(m—1) t=m-—2
(to be doubled if m = 2)
An = —i(m-1)(m+1) i=m (18)
m(m+1) i=m+2
0] otherwise.

Further use of equation (2), now with regard to the derivative
in y, yields the final result
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where, B;, = A,;.

Note that the unknows in the present method are the set of
coefficients {a;,} in a series expansion, while in the finite difference
method are function values {u(z,y)} at the points {(z,y)} on
a grid in the domain of solution. When the coefficients in the
present series are known, the global solution can be used to obtain
function values, derivatives, (using (7) at any point of the solution
domain). In many cases the Chebyshev coefficients {a,;} decrease
rapidly in magnitude, and a smaller number of them is wanted in a
Chebyshev polynomial approximation to the solution u(z,y), than
the number of grid points required for similar accuracy using finite
difference methods. If suitably large values of m,n are chosen fo»
the polynomial

n

Y Y tnnTu(2)T.(v)

m=0 n=0

to give a satisfactory approximate solution to equation (11), then
the problem becomes an algebraic one of finding the coefficients
of the set {a,;}.

Thus it is assumed that a,,, = 0, m > M, n > N. Then
letting m range from 2 to M and n from 2 to N , a total of
(M —1)(N — 1) equations is obtained from (19). The remaining
(M +1)(N+1)— (M —-1)(N —1) = 2M + 2N, equations required
for finding the coefficients {a,,,},m =0,1,...,M,n = 0,1,...,N
are obtained from the boundary conditions.

3.1 Use of boundary conditions

If we assume that v;(y) (¢ = 1,2) and ~(z) (i = 3,4)
have known Chebyshev expansions
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[ 4]

Z O T, (v)

2(2) = f: 29T, (2)

(i=1,2)

(i = 3s4)

then the boundary condxtlons (12) and (13) give

( l)m (al - mzﬁl)amn = ’7'(;1) T
m=0
(az + m*Bs)amn =P
m=0 -
E:(l)kh—nﬂda =)
Iy |
Z (a4 +n2ﬂ4)amn = ’7'(1:)

3
Il
°©

n=0,1,2,... (20)

m=0,1,2,... (21)

Equations (20) and (21), after some manipulation, may be written

in the finite forms

1 M

<~ Qon mOmn = Gn

g% +m2_:2# g
M

a'ln + Z l/ma'mn = h’n

m=2

1 N

Eam0‘+”2_:2Unamn

N
aml + E :Vnamn = sm

=rm

n=0,1,2,..,.N (22)

m=0,1,2,...M  (23)
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where

P =
{(er + m?*B1)(az — B2) + (—1)™ (az +m?B3) (e — B1)}/6:
VU ={az(a; + m?B,) — (—1)" a, (a; — m?;)}/6,

gn = {(az - .32)'7,(.1) + (al + ﬂl)’YSf)}/al

ho = {a27") — 17D }/6

Un = {(cs +1°Bs) (s — B.) + (—1)" (s +n?Ba) (s — B5)} /62
V., ={as(as + n?Bs) — (—1)" as(aq — n?B,)}/6;

Tm = {(a =B + (a5 = Bs)7}/6,

$m = {2 — a5}/,

6 =200, — 0y, + 38, #0;

6, = 20304 — a3fy + a4 f5 #0.

Note here that the boundary conditions (22) and (23) are not

all linearly independent; there exist four linear relations among
them.

Equations (22) and (23) may be used to eliminate Jao,, @1n,

>@mo, and a,, from the left-hand side of equation (19) to give

Amogn +Am1hn + BOnrm + Blnsm +

M
E('Ami — iAo — ViAml)ain +
=0
N
(BJ'n - UJ'BOn - VJ'Bln)a"nJ' =
=2

M N
Z Z Amifi;Bjn m,n > 2

1=0 j5=0
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which may be written as

M N
Y (Critin) + ) m;iDjn =bpn  mn>2  (24)
=2 1=2
where
Cai = Az — piAgo D;; = B;3 —U; Bys
Cs; = Ag; — Vi A, D,'s = B,‘s - VjBls (25)
Cm.'-:Am" m24 DJ',,=B_,',. n24
and

n

M N
bm" = Z z Amifiijn_(Amogn+Am1hu+Bonrm +Bln3m)
i=0 =0

Further, let A be the (M — 1) X (N — 1) matrix with (m,n)
element ¢, 41,n+1, 1 <M< M—-1,1 <n < N-1. Then equation
(24) may be written in the matrix form

CA+AD=B (26)

where C is an (M — 1) X (M — 1) matrix with (m,n) element
Cmi1.n+1; Disan (N —1)x (N —1) matrix with (m, n) element
dniin+1; and Bis an (M — 1) X (N — 1) matrix with (m,n)
element b, 41 pn+1-

It is worthy to note that the matrix C represents the Cheby-
shev approximation to 8° /dz* with the nonhomogeneous mixed
boundary conditions, i.e. C A represents the first term in equation
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(19) with the boundary conditions of equation (22) used to elim-
inate ay, and a,, for 0 < n < N. The y-derivative in equation
(19) appear above in the form AD.

The matrix equation (26) represents a system of linear equa-
tons in the rectangular matrix A of the type (M —1)(N — 1) con-
sisting of the elements a;; (2 <t <M, 2 <j < N). A method
using the Kronecker matrix algebra for solving such system is to
be considered in the next subsection.

3.2 Solution of the system of equations (26)
Let the Kronecker product of the two matrices C and D de-
fined by
C ® D = [¢;; D] (1,7 =2,3,....,. M)
and their Kronecker sum as
CoD=CQ®Iy_,+Iy-.®D

where I, _, and Iy _, are the identity matrices of order (M — 1)
and (N — 1) respectively. Now, introducing the so called block
vectors

g'.g b—2

a b
a=|" b=\

QN QN

consisting of the columns of the matrices A and B respectively,
where
A=lg,0, .. .ay], B = [byb, . . .by]

then it is not difficult to show that the system (26) is equivalent
to the following system

Ga=b (27)
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where the coefficient matrix G is equal to the Kronecker sum
DT & C, where DT denotes the transpose of D. More detailed
description of this algebra can be found in Graham (1981).

4. An alternative method of solution

If we assume that u(z,y) and its partial derivatives 8%u/dz?
and 3%u/dy? have bivariate Chebyshev series expansion given by
(14) and (15), and make use of the recurrence relations of Cheby-
shev polynomials, it can easily be shown that

aZ) = ) i - m?a,
(23)
a%? = > (5 - n*)an;

It follows from (28) that the partial differential equation (11)
- see equation (16) - is equivalent to

§ '

N
K,ia;, + Z @niLlin = fmn m,n>G6 (29;
i=0

M
=0

where
K, =1(i®> —m?) t >m+2 and ({ — m) even
L;, = j(52 — n?) Jj>n+2 and (j — n) even

and zero otherwise.

We propose now to assume that a,, and a,; can be ne-
glectged for m > M +1, n > N + 1, and to eliminate a; 5 _,,
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a;n, Gpy-1,; by making use of the boundary conditions (20)
and (21). Now conditions (20) and (21) and after some lengthy

manipulation, give

M-21

a’M—l,n+ Z “:namn =gn

m=0
M-2

' —
E Vi Gmn = by
m=0

a'M,n +

N-21
§ U —
Unamu =Tm
n=0

M-21

§ : '
am,N + Vnamn =S8m

Cm N1t

where
pn = {(-1)" (@2 -
(=
Vo = {(=1)" (e, —
(-
gn = {(-1)" (e

(—1) (en — (M

)™ (a2 +m?B;)(en — (M
M?4, )AL (2)
By = {(en + (M~ 102 +

n=0,1,..,N. (30)

(31)

Mzﬂl)(az +m ,32) -
)™ (o + M?B;) (e —

m?B,)(a: + (M —1)°8,) +

m*B,)} / &

—1)"8.)} / 8

— (a2 + M?B,)7(V} / 6

- 1)251)’75;2)} / 6;

U, = {(-1)" (as = N*Bs)(as + B:) —
(—1)" (4 + N?By) (a5 —nB5)} / 6,
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Vi ={(-1)"(as — n*Bs)(as + (N —1)*B,) +
(—1)" (a4 +n?B)(as — (N —1)°B5)} / 4

i = {(-1)" (a5 = N?Bs)7{) — (au + N?*B)AD} / 6,
s ={(ea + (N = 1)*B )7 +

(—1)" (s = (N =1)*B)71} / 6
8§ = ()" {(a1 — (M —1)’B,)(ez + M*B,) +
(ar + M?B)(az — (M —1)°8,)} #0
8 = (-1)" {(as — (M = 1)*Bs) (e + N?B,) +
(as = N?Bs)(as + (N —1)*B,)} # 0

Making use of (30) and (31) to eliminate ap —1,;m , Grm.n
Gm N -1 and @, y from the finite form of (29) leads to

(32)

where

Hmi = Kmt' _M:Km,M—l - V.{Km.M ]
Tjn = Ljn - U;’LN-I,n - V,-'LN.N ’
blmn = fmn - (Km.M—lg:; +Km.M h':; +LN—1.nr:n + LN,ns:n)-

-Equation (32) may be written in the matrix form

HA+ AT =B’ (33)
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where here A is the (M — 1)(N — 1) matrix with (m,n) element
AGnn , 0<M<M-2, 0<n< N -2 This equation has the
same methods of solution like that of the matrix equation (26).
This alternative approach leads to an equation which is sim-
ilar to equation (26). The approach of truncating the exact infi-
nite Chebyshev expansion u(z,y) by dropping the equations for
the highest modes from equations (19) and (29) and determining
them directly from the boundary conditions amounts to Lanczos’
tau method. There is some computational advantages in this ap-
proach, in that equation (33) throws some light on the structure of
the matrices H and T which were not previously apparent. Note
that many of the elements of H and the transpose of T, includ-
ing all those on and below the main diagonials are zero. Note
also that although the method of this section is computationally

simpler than that of Sec.3, it is matematically equivalent and will
produce identical results.

It is worthy to mention here that the Chebyshev expansion

methods of Secticns 3 and 4 can be easily extended to handle
Helmkcliz equetion

V2u(z,y) + u(z,y) = f(z,y)

for constant A subject to the most general boundary conditions
(12) and (13) This needs a simple modification of (24) and (32)
, by adding to their left and right hand sides, terms which reflect
the steps of their derivations applied to the coefficients of u(z,y).



AN ACC. DOUBLE CHEBYSHEV SPECTRAL APPROX. 263

Numerical results and comparisons

Consider the problem

0? 2 ]
61:': + # = —327” sin(47z) sin(47y)
subject to the boundary conditions
a (34)
ut 6_1::: = t4rsin(4ry) z==1
2
u 3_; = t4nsin(4rz) y==1

This problem has the analytical solution

oo N

u(z,y) = sin(47z) sin(47y) = i Z a;; T;(z)T; (y)

1=0 35=0

where

—4(-1)5"J;(4m)J;(47) 4,5 odd

a;; =

0 otherwise

and J;(z) denotes the Bessel function of the first kind. Note
here that the coefficients a;; decrease exponentially fast, because
of the decrease of the Bessel functions as the order increase.

This model problem tests the Chebyshev approximation to
Poisson’s equation subject to mixed inhomogeneous boundary con-
ditions which has a moderately oscillatory but otherwise well-
behaved solution which is infinitely differentiable.

The proposed methods of Sections 3 and 4 are used to obtain
the approximate solution
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n

u(z,y) = Z Z ai; Ti (z)T; (y)

for the three cases M = N = 16, 24 32. The maximum absolute
error of the Chebyshev approximation for each case is reported
in Table 1. A comparison with the second order finite differ-
ence method for the two cases M = N = 16, 32, is illustrated
in Table 2. For the well-behaved solution of this problem, the
Chebyshev approximation is superior. This is clear by the im-
provement between M = N = 16, and M = N = 32; the error of
the second-order scheme is reduced by a factor of 4, and that of
the Chebyshev expansion by a factor of 10°.

We next tested the Chebyshev approximation to the problem

Fu, Pu_, ‘
8z?  dy*

subject to the boundary conditions (35)
u(z, 1) = cos(%”-) . u(l,y) =0

This problem is symmetric about both axes, and its analytical
solution is given by
cos(%Z) cos h(%E)

cos h(%)

u(z,y) =
The approximate solution with M = N = 16, is then

] e n

u(z,y) = Z E a,,T.(:B)T,(y)

i=0 j=0

and the calculated non-zero values of the coefficients {a;; } are
given in Table 3. The relations (7) can be used to evaluate u(z, y)
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at any point (z,y). Comparison with the analytic solution at the
points where z = 0(0.2)1, y = 0(0.2)1 shows a maximum dif-
ference of 10~ ° between the approximate values and the analytic
values. Relations (9) can be used to find the values of |V?u| at
the same points. The maximum and minimum derivation from
zero are 10~2 at (1,1) and 10~* at (0,0). These values are calcu-
lated to provide some measure of the accuracy of the solutions.

With M = N = 10, (7) gives values of u(z,y) at the points
previously selected, in agreement to seven decimal places with the
values from the analytical solution. The maximum derivation of
|V2u| from zero is now less than 0.5 x 10~7.

Now consider the problem

8%v 8%y 7
dzx? + a_y"‘ =0

for which (36)
v(z,1) = v(1,y) = v(-1,y) =0,
v(z,—1) =7(z) , F(x1) #0. i

This problem has discontinuities at the two vertices (+1, —1).
It is possible to deal with such singularities by observing that for
any solution v of the homogeneous equation

o, o
9z  9y*

derivatives of v are also solutions.Now, introduce the function
v(z), such that

d’y
—+q= +1) = 0.

Then
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Zu %u

T oy?

where u(z,y) is the solution of the problem

8%u  9J%*u
dz?  Oy?
u(z,1) = u(l,y) = u(-1,y) =0,
u(z,—1) = q(z),

=0,
(37)

in which there are no singularities at the verticies.

As an example take F(z) = 1, giving v(z) = (1 — 2?) in
(37). For that problem the required second derivatives can be
calculated using (9) and (10). Thus the solution v(z,y) of (36) is
known because v(z,y) = 8*°u / 9z? = —3%u | 9y?, where u(z,y)
is now the solution of (37). This problem is symmetric about the
y-axis, and its analytical solution is given by

1) cos(i — ;)mzsinh(i — 1)w(1 —y)
u(z9) = Z “ (1 - 1 7)? sinh(2i — 1)7

The approximate solution with M = N = 16 is then

16 n

u(z,y) = Z Z a;; T; (z)T; (y)

t=0 3=0

where the coefficients {a;;} are given in Table 4. Using these
coefficients with (7) to calculate u(z,y) when z = 0(0.2)1, y =
—1(0.2 = 1, and comparing with the corresponding values from
the analytic solution, show that there is agreement up to seven
decimal places at the selected points. Relations (9) can be used to
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calculate |V?u| at the same points, the values are almost zero at
all internal points and differ from zero on the boundaries. Never-
theless, the solution u(z,y) does fit the boundary conditions very
accurately.

It is worthy to note that if M = N = 10, then the coefficients
{a;} in this solution differ slightly from those obtained with M =
N = 16, and the values of u(z,y) obtained from this economised
solution differ from those with M = N = 16, by 2 x 10~ ¢ at most,
at the previously selected points.

From the result of the last two problems it is seen that al-
though a greater number of terms is needed to produce more ac-
curate results, the solution from fewer terms is also adequate even
if values of |V?u| are not very satisfactory. It appears that ac-
curate solutions may be obtained with a smaller number of terms
but that if corresponding accuracy is needed for derivative values,
then a larger number of terms will be required.

Consider the problem

dz?  Oy? (38)

With M = N = 20, the coefficients in the solution (14) are less
than 10 ¢ in magnitude for m,n > 16 and lead to the numerical
results given in Table 5. This example serves to illustrate the ap-
plication of the proposed methods for solving Helmholtz equation.

The numerical results for the previous examples were ob-
tained by solving the algebraic equations for the series coefficients
using the iterative method of successive over-relaxation; values of
the over-relaxation parameter of between 1.8 and 1.95 were found
most effective in keeping down the number of iterations. Con-
vergence was assumed when the relative error of two successive
iterates is less than 10°, for every coefficient a,, in the solution.
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To end this section, it is worth to be mentioned that this type
of doubly-Chebyshev spectral approximation for elliptic equations
can be greatly extended and generalized to parabolic equations in
two-space variables with constant or even variable coefficients. It
can also be extended and generalized by using collocation (pseudo-
spectral) method to find the expansion coefficients implicitly, in-
stead of matching two series expansions. Examples of this ap-
proach for parabolic and elliptic equations in one-space variable
are given in Pasciak (1980), Gottlieb (1981) and Funaro (1988).

6. Some concluding remarks

As both the general theory of the convergence of spectral
methods suggests and the first problem (34) illustrates, when-
ever the solution u(z,y) is infinitely differentiable, the Chebyshev
expansion can achieve highly accurate solutions to Poisson’s equa-
tion far more efficiently than the standard finite-difference meth-
ods. Note also that the Chebyshev expansion method requires less
demands of computer storage since fewer degrees of freedom are
needed.

Spectral methods for Poisson’s equation, of course, need not
be based on Chebyshev polynomials. In some applications an
expansion in Legendre polynomials may be more appropriate.

The use of the ultraspherical polynomials spectral approxi-
mation has been recently applied by the author (1989) to the third
boundary value problem for parabolic equation in one-space vari-
able. Use of doubly-ultraspherical spectral methods to parabolic
and elliptic equations in two-space variables can also be extended
and generalized easily. We hope to publish this in a forthcoming
paper. Note here that Chebyshev and Legendre expansions may
be considered as special cases from the ultraspherical expansion.
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TABLE 1

Maximum absolute error of the spectral approximations to
problem (34) as a function of the number of degrees of freedom

M and N.

M=N | Maximum absolute error
16 3.3x10°?
24 6.9 x 10~©
32 48 x 10~
TABLE 2

Maximum absolute error of the second-order finite difference
(SOFD), and the spectral Chebyshev apoximations (SCA), to
problem (34) as a function of degrees of freedom M and N.

M=N| SOFD SCA
16 2.3x107!|3.3 x 102
[ 32 5.3x107%|4.8x10" !

TABLE 3

Non-zero coefficients (x10°%) in the approximate solution of
problem (35).

0 2 4 6

1293257 |283627 013479 |268

-684173 150045 | -7131 |142
38348 (8410 | 400 | 8

-817 -179 -9 -0

L R =1
Cos o
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Non-zero coefficients (x10°) in the approximate

TABLE 4

problem (37), with M = N = 16.

solution

of

i\J o 1 2 3 4 8 [ T ] 9 o n1 12 t3 he N8 16
o 338236 2271857 |(T€141 [21691 |4418 1028 |267 |96 |41 20 O |-6 |3 |-2 |1 |-1 (1
2 173889 {115630 [369538 | 9442 [138¢ 21 9% |89 |31 TIG ® |-6 |3 -3 |1 |-1 |1
4 4418 -1787 -13286 1374 -831 358 134 |33 |-8 |-3 I3 [-3 |2 |-1 |1 |-1 |0
6 367 -231 99 88 -134 119 -83 |47 [33 |10 |-4 |1 |O [0 (O |O |O
8 41 -39 31 -14 -8 13 -33 |21 [1¢6 |10 |-6 |3 |-2 {1 JO (O |O
10 10 -10 ® -7 3 1 -4 L} -6 6 |-4 |3 |2 |1 [-1 JO |O
13 3 -3 3 -3 2 -1 ] 1 -3 2 |-2 |2 -1 ]1 |-1 j1 }JoO
14 1 -1 1 1 1 -1 ] o ] 1 |-1 |1 1|1 |-1 |0 |O
16 1 -1 1 [} o o o [} [} [} 0 |0 |o |O |O |O |O

TABLE 5

Values of u(z,y), z,y = 0(0.2)1,M = N = 20, for problem

(38).

i \J 0.00 0.30 0.40 0.60 0.80 1.00
0.00 F0.1746¢ 0.16983 10.18431 [0.125806 [0.07680 P.0000OO
0.30 F0.16983 [0.16817 [0.18027 |0.133203 }0.07486 P.00000
0.40 }0.18431 [0.185027 0.13721 [0.11216 [0.06950 0.00000
0.60 FO.I)GOO F0.12203 £0.11216 0.09386 [0.03876 [0.00000
0.80 0.07680 r-0.0"llG F0.06980 f0.05876 [0.03880 0.00000
1.00 0.00000 j0.00000 |0.00000 |0.00000 |0.00000 0.00000









