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1. Introduction

Block-pulse function /b.p.f./ and Walsh functions are closely
related. As basis functions in an approximation the two sets of
functions lead to the same results. The results are piecewise con-
stant with minimal mean square error. Walsh series approxima-
tion has been successfully used to analyze, optimize and identify
linear systems by Chen and Hsiao [1] - [4], and Corrington [6].
With the introduction of Walsh product matrix, Walsh series ap-
proximation is extended to the analysis and optimization of time-
varying linear systems [8].

This paper establishes a procedure for solving linear systems
of high order differential equations with variable coefficients via
the b.p.f. technique. First the b.p.f. and the operational matrix
are introduced and their properties briefly summarized [5], [7].
Then the block-pulse product matrix is defined and the opera-
tional property of product matrix is proved.

2. Block-pulse functions and the operational matrix

A set of b.p.f. on a unit interval [0,1] is defined as follows:
for each integer i,0 <1 <m and m € P = {1,2,...} the function
©; is given by
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(1)

1 for # <t< '—+m—1
w;(t) =
0 otherwise

This set of functions can be concisely described by an m-vector
®(,,) with ; as its ith component. ®,,, is called the block-pulse
vector. It is well known that a function f which is integrable in
[0,1] can be approximated as

(2) .
[ Z!MO-'

=0

where the coefficients y; are determined such that

JECETCR

0
is minimized. In fact, y; is given by

(3)

e
y.-=m/f(t)dt, 0<i<m.

The coefficient vector y of (2) is

(4)

y= (yanh-“sym—l)T-

The b.p.f. saatisfies the properties
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(5)

wip; = 6P
and

1

[eitres 0 = 8,

0

where §;; denotes the Kronecker § symbol.

The function t*,t € [0,1],k € N = {0,1,2,...} can be ap-
proximated as a b.p.f. series of size m. Indeed, from (2) and (3),
we have

m-—1
tt ~ > t.()pi(t), k€N,
=0
where
L
N e m i+lk+1_ik+1
w@=m [ea= RS -
Then,
(7)

* k+1

kﬁgZW+1“—¢9 s 1
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and in matrix form
(8) "
tk o~ k—ﬁTEQ(m)(t)
where
(9)
1 k+1 2 k+1 1 k+1 m-—1 k+1
T = - - -\ vee -\ .
T =() () —() 1= (B) )

The first integration of b.p.f. can be expressed by b.p.f. In-
deed, from (1), we have

0, 0<t< *
/(p.-(/\)dz\={t—':‘;, gy
o L #l<i«a
1 m-—1
(10) =(t-Jelt)+— D #i(t)
F=i+1

From (7), we have

(11)

e Y () .

Substituting (11) into (10) and using (5), we obtain
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(12)
t 1 m-—1
~ — — <t .
/go.(,\)dx (1) + mj_z;lqp, (), 0<i<m
0 =1

Therefore, we can write the relationship between b.p.f. and their
integrals in the following matrix form

- . -
©o (A)dA -
Jeot¥) ;11 iW-sooEtgw
; 2 o1 (t
foa | 1lod 3 || o
m . . .
PRV B RSO | P
L o mot m
in or compact form
(13)
t

0

B is called the operational matrix of dimension m which relates
b.p.f. and their integrals.

3. Block-pulse product and coefficient matrices

The product of a block-pulse vector ®(,,) and its transpose
Q{m) is called the block-pulse product matrix and is denoted by
®(mzm). That is
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(14)

_ T

Using the disjoint property of the b.p.f. in (5), we obtain
(15)

0o 0 0 ... 0 7

0 o, 0 ... 0

Q(mzm)= 0 0 Y3 0
L0 0 0 ... ©m-1d

®(m-m) can be represented in the composite matrix notation

(16)

— [a(m) (m) (m)
@(mzm) —[Ao Q(m)’Al Q(m)""’Am—IQ("‘)]

where Aim) ,k=0,1,...,m— 1 are mxm symmetric matrices and
can be obtained from

(17)
Aim) — (6]"'6,'1' m-1

i,5=0"

For example, when m=4

1000 000 O

@w_10 00 0f o _ {010 0]

A" =10 00 ol =10 0 o ol
0000 00000

The block-pulse coefficient matrix Y{,,.,,) corresponding to the
coefficient y or (4) is defined by
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(18)

[ Yo 0 0 0 7

0 v O 0

.Y'(mzm) = 0 0 Ya 0
L0 0 0 ... yn-1d

Similarly ¥(,,.m) can be representedd as

(19)

Lemma.

(20)
Q(mzm)y = },(mzm)Q(m)'

Proof. From (16) and since the matrices ®(mzm) and A™) are
symmetric, then

Bnom)Y = [A® ), A @)y A 8 Ty

[ ®T A("')yT

(m)
&T A(m)y

— (m)

L‘I’(m)Am 1Y

Noting that Q{M)Ai"')y is a scalar,

&7 Ay = (87, A" y)T =" A S0
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for k=0,1,...,m — 1. Hence

(m)
yT A?M)Q(m) yT Agm)
TA™ (m)
m: T A (m)
¥ AN B v AL
—_ T
_Y(mzm)Q(m)'

Since Y(,,,m) is symmetric, the proof is completed. With the op-
erational property of (14) and (20), the solution and optimization
of linear time-varying systems of high order can be easily carried
out.

4. Solution of linear time-varying systems of higher order

Consider the following linear system of differential equations
of order r(r > 1) with variable coefficients

(21)
X 4 ZA(r-k)X(r—k) = GU,

k=1

X)) =x%  (i=o0,1,...,r—1)

where X is an n-vector

X = (21,122,...,2:,,)T,

U a g-vector

U= (ui,ug,...,u,)7,
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and A*¥)(k = 0,1,...,r — 1) and G are nxn and nxq matrices
with variable coefficients, respectively. Suppose every element of
U,A®) (k=0,1,...,r—1) and G is integrable in the interval [0,1].

For solving this problem by the b.p.f. series approach, let

a!*) and g;; be the elements of A(*) and G, respectively. For

(%}
convenience, let Agk) be the i-th column of A(*) and G; be the
i-th column of G. Thus (21) becomes

(22)

X 4 zr:zn:Ag"k)zf.'_k) = Zq:G.-u,-.
i=1

k=1s=1

We expand X(*) in b.p.f. series of size m,

(23)
m-—1
X(r) ~ Zc,-(pj = CQ(,,,)
3=0
where

¢y = (cljac2j) ceay C,U')T
is the j th column of the nxm matrix C.
Now, integration of (23) from O to t, and using (13), we get
X~ = CB®,,) + XS Y.
In fact, the k th integration of (23) yields
(24)

k
(r—k) __ k (r—1)
X" =cB <I>(,,.)(t)+§Xo B0
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(k=1,2,...,r, tel0,1]).

From (8) and (9), we have

(25)

k-0 = (k—i+1)

Ty ®(m) (2).

Substituting (25) into (24), we get
(26)
X(r‘_k) = [CBk + Z(k)]Q(m) (k = 1,2,... ,r)

where

k .
(k) — Y ylr=d)pr
z _mg(k—i+1)!x° To—s

is nxm constant matrix. Let V..(")T be the i th row of the matrix
[CB* + Z(®)]. Then (26) can be written as

(27)

1]

AN YT (=12

since every element of U, A(*) and G is integrable in the interval
[0,1]. A b.p.f. series approximation of size m gives

(28)

m-1
u,zzu,.,(p',:U.TQ(m) (‘i: 1,2,...,q)
j=0
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(29)
m-—1

af:) o~ a,f;.‘,)go, = a.(.;)TQ(,,,) (k=1,2,...,r¢,5=1,2,...,n)
=0

and

(30)

m-—1
Gi; = Zgl'jl(pl = ﬂiTjQ(m) ('= 1’2a"-an;j = 1s2a°",q)
=0

where
(31)

U.'T = (uiO’u’il, ---aui,m—l)a
(32)

k)T K k k)

aij) = (a'g,'g’a.!,'l) yeee ’a'Sj.m-l

and
(33)

ﬂz = (gl'jO’gi'jl yee3Gigm- 1).

The components in (31) - (33) can be obtained by applying (3).
Indeed,

-
Uy =m/ u.'(t)dt,



and

Therefore,

(34)

AR =

1

and

(35)

G:

43
(k) _ (k)
a; =m / a;;’ (t)dt
=
b1
Gij1 = m / g.'j(t)dt
=
(r—K)T
13
a(r—k)T ( )
24 r—k
. Oim) =, B(m)
(r~k)T
ni
B
B3
.| Bim) = Bi®(m)-
.

Inserting (23), (27), (28), (34) and (35) into (22) gives

(36)

r n r—k
C®my + YY) o Mo, VT, =

k=1li=1
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q
=D _Bi®(m) U B(m)-

=1

Noting that V..(k)TQ(m) and UT ®(,., are scalars,

VT e, = o7, VY

U..TQ(,,.) = Q{m)U.-

Hence (36) becomes

(37)

CQ("‘) + zr:zn:afr_k)Q(mzm)‘,.‘(k) = i:ﬂié(mzm)vi

k=1s=1 t=1

where

— T
Pimzm) =PB(m)®(m)

is the block-pulse product matrix introduced in (14). From lemma
1, we have

(38)
(k) _ yy(k)
Cimem) Vs = Vitmam) B(m)
(39)
Q(m::m)ll]l' = Ui(mzm)é(m)
where V‘.((':'Lm) and U;(,..m) are the coefficient matrices corre-

sponding to the coeflicient vectors Vf“ and U;, respectively.
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Substituting (38) and (39) into (37) yields
(40)

C+ iiaﬁhk)"f(ﬁf,m, = zq:ﬂiUi(mxm)-

k=1i=1 i=1

Equation (40) is a set of nxm linear algebraic equations which
are used to compute the unknown coefficients ¢;;. Once c;; have
been computed, the solution X in b.p.f. series approximation is
obtained by substituting C into (26), namely

(41)

To increase accuracy of the solution, m should be chosen large.
Now, according to the properties of the operational matrix

B, we derive a recursive algorithm to solve C from (40). First, we

note that the matrix B is triangular matrix and has the form.

o
1 1 1

Lo bfl) bi'i)"‘
B=o—10 o &’ .. 8,

Lo o o ... Y]

where

¥V =1 and 8" =2 (i=2,3,...,m).

An elementary calculation show that the powers B*(k > 1) has
the form
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2 R iy

Lo w” b%": b;,f:_l

k __ k k
o B b
Lo o o .. &

where the elements of B* are determined by the following recur-
sive formulae

B =1

b =) BUbY | (7=2,3,...,ki=2,3,...,m).
s=1

Consequently,
1 &
k (k) — (k) (k)n,m
CB* + 2™ = [——(Zm)" D b8 e, + 2010,
p=0

where yf;) are the elements of Z(*). Using the general form of the
coefficient matrix in (18), we get

(42)
(*) —
i(mam) —
VE 0 ... 0
0 vz 0
0 0 | %

tm-—1



182 RAFAT RIAD

with

1 S (k)

kK __
Vt: (2m)k Eb.!-f'l pc +zun
p=
(7=0,1,...,m—1)

and
(43)

U0 0 cee 0
0 L 73 Pes 0
Ui(mzm) = . .

0 0 o Uim-—1

Substituting (34), (35), (42) and (43) into (40), we have

SR TR < A
Ci; + kz_:l (2m)k ;a\'l:‘ b:i—p+ 1Ctp

p=0

= —ZZa,,,zl j+1 + thhu‘:

k=1l=1

or in simple form

(44)

EZ n e, =4di; (J=0,1,....m—-1;:=1,2,...,

p=0i=1

where

n)
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(45)
- ~ 1 (k) (k)
)= Z (2m)* L
k=1
and
(46)
r—k k
di:' = _Z fl: ) l(1)+1 + Eqﬂy YUyy .
k=1l=1
Equation (44) can be written in the matrix form
(47)
i
Y Fje,=D; (j=0,1,...,m—1)
where
= (F7)i=1
are nxn matrices
Take 7 = 0 in (47), we get
Fooco = Dy

Then the first column ¢, of the solution C is obtained

— -1
Co —FOO Do.

Take j = 1 in (47), we get
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Fioco + Fyyey = Dy

Then by substituting ¢, we obtain ¢,

¢, = Fl_il (Dl - Floco).

In general, all the vectors ¢,;,5 = 0,1,...,m — 1 are found by the
following recursive formulae

-1
¢o = F ' Dy
-1

¢; = F;_JI(DJ - ZEPCP) (J =12,...,m— 1)'
p=0

In the above algorithm, we always sork with matrices F of
nxn. Therefore there is no need to operate with larger matrices
whatever m is chosen. The method described in this paper is easy
to implement on computer. A program has been written in Basic
language for this method.

Example

A simple example is chosen for illustration:
z" — 2tz + 6z = 0; z(0) =0,z (0) = 3,
The exact solution is

z(t) = 3t — 2t°.
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Comparison of the exact solution and the b.p.f. series solution,
for m = 8, is shown in table I and drawn in Figure I

Range | Eight-term |Exact value at Error
approximation] mid-interval
.184615385 187011719 [2.39633414E-03
.542307692 .549316406 |7.0087139E-03
.865384615 876464844 .0110802283
1.13076923 1.14501953 .0142503008
1.31538462 1.33154297 0161583531
1.39615385 1.41259766 0164438095
1.35 1.36474609 0147460923
1.15384615 1.16455078 .0107046324

-
00 =
—

-
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-

et e e e e
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Figure I
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The agreement between the b.p.f. series solution and the exact
solution is very satisfactory considering that the series was trun-
cated after the eight term. A better result would be obtained if

large m is used.
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