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A PROXIMITY TEST FOR SECOND
ORDER DIVISORS
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Abstract »Proximity test method”® for solving polynomial equa-
tions were introduced by Henrici in [1]. We extended the notion of test
for two points and give a test which we calculate by dividing the given
polynomial. With the algorithm we get a second degree divisor of the
polynomial.

Introduction

Since the widespread application of high-speed computers,
there has been a great affort for the construction of globaly con-
vergent algorithms for determination of zeroes of polynomials. It
follows from the nature of the problem, that most of these algo-
rithms are based on complex arithmetic 1], [2], [3], even in the
case, when the original polynomial is real.

In this paper we give an algorithm which uses only real arith-
metic, and gives a second degree divisor for an arbitrary poly-
nomial with real coefficients. The basis of our algorithm is the
so called ”proximity test method”, introduced by P. Henrici, de-
scribed in [1], but we extended the notation of test for two z,,
z, points. Here we give a test which we calculate by dividing the
given polynomial, and we prove that the assumptions necessary
for being a proximity test are satisfied. By the test we construct a
couple of disks around z; and z, respectively, containing no zeros
(see 1. Theorem) and another couple of disks containing at least
one zero (see 2. Theorem). These disks form the basis of the
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search algorithm. The radii of the disks can be bounded by an
arbitrary small prescribed number e.

Notations and definitions

Let P(z) = 2" +a,_,2""' +...+ao be the given polynomial
with real coefficients, let &;,&;,...,&, be its zeros and let o be
a number such that | & |< o,¢ = 1,2,...,n. Without loss of
generality we may assume that 0 = 1. Let D} denote the set
{z € C: 2|<1,Im(z) > 0} and D; theset {z € C :| z |<
1,Im(z) < 0}.

D, ={<2) €C?:2 €D} ,z €Dy
and
(2, =% or 2,z €R)} (1)

Let us divide P(2) by 22 + az + 3, where a and § are real
numbers, and express the polynomial as

P(z) = R(z,a,0)(z* + az + B) + F(a, 8)2z + G(a,8) (2)

We approximate two roots of P by the roots of 2? + az + .

In the algorithm we construct a sequence {(z\*’,2{*))7} and a
sequence of disks {(D}, D; )} such that

i. 2*) and 2{*) are the roots of 22 + a(*) z + g*),

ii. zi") is the center of the disk D} and

z{*) is the center of the disk D,
ili. Dy C D;_, for i =+,— and every k=1,2,...,
iv. the radii of D} and D, converges to zero

"
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v. D; (i = +,—) contains at least one root of P.

The basic notion of the algorithm is a test, depending on the
polynomial P, on a parameter p > 0 and any points (z,,2;)T
such that (2,,2,)T € D,. We give the test by an inequality. The
test gives YES - the inequality holds - at all points (2,,2;)T close
enough to a pair of zeroes of P and gives NO - the inequality
doesn’t hold - at all points far enough from any zeroes. (There
may be an in-between region in which the test is either YES or
NO.) The parameter p regulates the difficulty of the test.

Formally, a

T(P,p,(21,23)7) : Pox(0, po]xDo — {YES,NO}

function is called test if there are two functions

é,% :(0,p] = R*, so that for an arbitrary pair 2, , 2, the follow-
ing statement hold

a) if there exist at least two roots of P, £, £;, so that

I(z)-(2)
22 §2 .
(the disk | 2, — w |< ®(p) and the disk | 2, — w |< &(p)
contains 1-1 roots of P,)

then

< &(p),

T(P,p,(2,2)T) = YES
b) if for any pair of roots of P, ¢, &,

I(2)-(€)
2 € o
(the disk | 2, — w |< t(p) and the disk | 2z, — w |< ¥(p)
contains no root of P,)

> ¥(p),
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then

T(P,p,(2,2)") = NO.

Here

1(2)- (&)

c) lim ¢(p) = 0 and

I = max {|z1—-£1|,|12—52|}-

d) the function ¢ is continuous, strictly monotonically in-
creasing and its range contains the interval (0,1].

Remark: a) and b) evidently imply, that ¢(p) > ®(p). We do
not require the inequality & = .
In the algorithm we shall use the test

T(P,p,(21,2,)7) : = (max{| F(e,B) |,| G(a,B) |} < p)
where a=—(z, +2,) (3)

and 8 =12,2, real numbers.

To show that this test has the required properties consider the
following theorems.

1. Theorem: Let ¢ > 0 and z,,z, be the roots of
z? + az+p0.
If there exist two roots of P, ¢, , &,, such that

I()-(&)
22 €
then | F(a,8) | < (n—1)2" "¢

and | G(a,8) | < n2" e

oo
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it follows that max{| F(a,8) |,| G(a,8) |} <n2=~1¢).

Proof: Substituting z,,2, into (2) we get
P(z))=F-2+G
P(z)=F-2+G
Ifz, #2, F= ﬂ'—:f'—:('—’)-a.ndG P(z)—F - z. (4)

For the case 2z, = 2; we get from (4) that

im F= lm ZG=PE)_ P'(z,).
(21—23)—0 (31-33)—0 2 =2
The (4) expression can be used in the form
ﬁ (2 — &) - ﬁ (22 - &)
F = t=1 1=1 —
— 2
'1:13(21 - &) - '1:13(22 - &)

= (21 — &)(z — &) % —2) +
(m—&)(z &) — (- &) — &) T

+ p— I=I(zz &)

We can estimate | F | in the following way:

a)

-I:‘I:,(ZI_&)_'ﬁs(zz‘&) n=2 i _ n—2
| P <A (7)<

t=1 22

n—2

- i—- o n—2
SZ(Izll "Hlal " a|+...+ ]2 1)( ; )5
i=1
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s'gi(";z) <'§(n-z)(";2> <(n—2)2-2

b)

|z1—fxl'|21"fz |Sf‘2

|4 (31 —fl)(zl —fz)—(zz—fl)(h _fn) |<
2 — 2 -
S|31_61+32—62 |S|z1_€1|+lzl_£2 |Sz€

d)

From a,b,c, and d,
|F|<(n-2)2""'e+2" 'e=(n—-1)2""'¢ and
|G| <|P(n)|+]|z |- |F|<2* 'e+(n—1)2""'e=n2"""'e.

1.1 Corollary: Let p > 0 and z,,2, be the roots of 22 + az + .
If

max{| F(a,f) |,| G(a,8) [} > p

then for every roots of P, ¢, , &,

(2)-(&)

(i.e. no root of P is contained in the disks

P
n2n— 1

.
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and |z -wl|< —2—).

Izl _w|'<‘ n2n—l

n2nr-1

Hence the test defined by (3) satisfies the a) property of the
test with

__bp
P(p) = vy

For the determination of the ¥ function consider the following
lemma and theorem.

Lemma: Let H be a connected set in C.
I

sup | P(2) |< ¢
3€EH

then the diameter of H is less then 4 {/c.

Proof: Let d be the diameter of H. For any € > 0 there exist
%9,2* from H such that a :=| 2, — 2* |> d — e. Using connectivity
there must exist for every 0 < z < a a point 2z € H for which
z =2y +ze'*. Now

|P(z) =[] l2o+ze® =& |2 ] li 2™ | - |20 - & |12
' k=1

k=1

ZH|z~ak| with o =| 2 — & |-
k=1

Thus sup |P(2)|> sup |z—ay |- |Z—an .
1€H 0<z<a

Using the transformation y = ﬁ; —1and g, = f/‘;— — 1 we get

a n
sup | P(2) |> [—] sup |y—B |- |y—5nl.
s€H 2| —1<y<a
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The supremum on the right hand side has its smallest value for
the Chebysev polynomial, therefore

seH 2 2n—1 22n—1 4n

sup | P(2) |2 [3] 1 _(d=9"  (d=9"

for any € > 0. € — 0 implies

¢ > sup | P(2) |> [é] .
sEH 4

which is equivalent to d < 4 {/c.
2. Theorem: Let 0 < € < 1/3 and
P(z) = R(z, a,8)(2? + az+ +8). If

max{| F(a,8) |,| G(a,8) |} < €

then the distance of the roots of P and P
is less then 4 /3¢, i.e.

min mna.x I 61 - z,,(,) |< 4{/52).

r perm (=1

where z, denotes the roots of 13).
Proof: Let ¢(2) := P(2) — P(z) = —Fz+G (i.e. P+q=P).
Let us define the following set

H :={z€ C:| P(2) |< 3¢}.

Let us denote the components of H by H,, H,,...,H,. We shall
compare the roots of P and P in H;. H; is a connected set in C
and sup,. . | P(2) |< 3¢, thus it follows from the lemma that the

diameter of H, is less then 4 ¢/3¢. Let T; be the boundary of H;.
For z € T
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1. | P(2) |= 3¢,

2.|z[<2 (since | z |> 2 would imply 3¢ =| P(2) |=
|z—&|...|2— & |>1" =1 which is a
contradiction)

3. | q(2) |< 3e.

Since P has no root in I'; and for z € T; | ¢(2) |<| P(2) | it
follows from Rouché’s theorem (see [4]) that the number of roots
of P = P + q in H; is the same as that of P. The distance of the
roots are less then 4 {/3¢. Thus the theorem holds.

2.1.Corollary:
Let 0 < € < 1/3 and let z,, 2, be the roots of 2* + az + 8. If

max{| F(a,B) |,| G(e,B) [} < €
then there exist two roots of P, §,, £, such that

l ( 1) ( 1)
2 EZ
2.2. Corollary:

Let 0 < € < 1/3 and let 2,2, be the roots of 22 + az + B. if
for every pair of roots of P, £, &;,

(2) - (eIl > 495
23 3 oo

then  max{| F(e,B) |,| G(a, 8) |} > €.

The last corollary means that the test defined by (3) satisfies
b) with

¥(p) = 4/3p.

It is clear that ¢ also satisfies c) and d).

< 43/3e.

©o
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The Search Algorithm

Let T be the test defined in (3) and let {7, } be a monotonous
sequence of positive numbers converging to zero such that
70 = 1. We shall describe an algorithm for constructlng a se-
quence of points {(z(") , (k))T} such that

1. (z(k) gk)) € Do

2. each of the disks

D} :={z:z-2* |<n}nD¢ and
D; :={z:z—-2" |<n}nD;
contains at least one root of P for every k =0,1,...

Let (2{°),2!”)T = (0,0)T. Then both D} and D; contains

a root. The algorithm now proceeds by induction. Suppose we

have found (z“‘ 1) ,z;k_ "NT such that D;}_, contains a root and
D, _, also. To construct the k-th approximation we cover the
set D}_, with closed disks of radius < ¢ (which will be given
later). The covering disk centers of D, _, we get from the centers
of D}_, with conjugation. We apply the T test with p = p, at
each elements of the following set, which contains pairs of covering

disk centers:
2, covering disk center in D}_,,
1 :={(21,22)7 : 2, covering disk center in Dj_,
and (2, =2, or 2,z €R)} ie QCD,.

The parameters ¢, and p, are chosen such that the following two
conditions are met:

i) If both of the covering disks with center 2, and 2,
(21,22)T € N contains a root of P, then
the test gives YES at (2;,2;)7.

ii) If the test gives YES at (2,,2;)7 € Q, then both

of the disks | z— 2, |[< 7, and | z — 2, |< 7, contains a
root of P.
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Condition i) is satisfied if ¢, < ®(px) and condition ii) is satisfied
if ¥(px) < 7. Thus both conditions are fulfilled if

pr =%~ '(n) and
& = ®(p) = (¥ (1))

where ¢~ ! denotes the inverse function of .

At least one pair of the covering disk (with centers from 1)
contains a root-pair of P, since both D/}_, and D, _, contains one,
and all are contained in D} U Dy . Thus by i) the T test gives
YES with p = p, and least one center-pair from 2. We choose

(zik),z;k))T to be the first pair the test gives YES at. Actually

there is no guarantee for each disk of radius ¢, surrounding zik)

and z;k) to contain a root but by ii) D} and D; must contain at
least one.
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