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AN ITERATIVE METHOD FOR NONSELFADJOINT
ELLIPTIC PROBLEMS ON REGIONS
PARTITIONED INTO SUBSTRUCTURES

BELA KISS

Computing Center of E6tvos Lorand University
Budapest, Bogdinfy u. 10/b. H-1117

Abstract. A new preconditioned conjugate gradient (PCG)-
based domain decomposition method is given for the solution of linear
equations arising in the finite element method applied to a nonselfad-
joint elliptic problem. The domain under consideration is broken into
subdomains and the preconditioner is defined such that it require only
the solution of matrix problems on the subdomains. Analitic estimates
are given which under appropriate hypotheses garantee the geomet-
ric convergence of the preconditioned iterative procedure. The rate of

convergence is independent of the number of unknowns.

1. Introduction

In the paper we describe a PCG-based domain decoposition
method for the solution of linear equations which arises from
the discretization of second-order nonselfadjoint uniformly elliptic
boundary value problem in a bounded region 1 via finite element
method. For the sake of exposition we will assume that 1 C R?
and it is partitioned into two subregion 1, and Q,.

Domain decomposition methods for elliptic problems are de-
scribed in many papers see [1-2|, [5], [7-8] and the references given
there in. Our method is based on technique explained in [1], 5]
and [7]. Here we give an extension of method of decomposition for

selfadjoint elliptic problems proposed in [1] for the nonselfadjoint
elliptic problems.
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The nonselfadjoint case is studied for example in [5] using the
minimum residual method which is less effective than the method
proposed here.

2. Differential and Discrete Problems

We consider as a modell problem the weak form of the fol-
lowing Dirichlet problem for the second order elliptic equation.

For f € L?(Q) find a function u € H} (1) such that

a(u,v) =Q(v) VveH;(0N) (2.1)

where (1 is a bounded region in R? and

a(u,v) = /{ Z a;;(z)0;ud; v+

t,5=1

Zb (z)8;uv + ¢(z)uv}dz
=/fvdz, Vv € Hy (0),z = (z1,2,) €0
and a;;,b;,c € L™ ().

We assume that the bilinear form a(u, v) satisfies the condi-
tion: there exist positive constants v, and v, such that

vl el o)< alu,u), Vue H(Q) (2:2)

and

a(u,v) <v, ||u ”2;(0) v IIi;(m,Vu,v € H} ()
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This problem has an unique solution if the boundary 91 of the
region {1 is piecewise Lipschitz-continuous; see for example [3].

We solve the problem (2.1) by the finite element method with
triangular elements and piecewise linear approximation. For sim-
plicity, we assume that the boundary 30 of 1 is a polygonal line,
but a similar analysis applies for the general form of d1). The
region {1 is partitioned into triangles e; such that the intersection
of two different triangles is either empty or consist of exactly one
vertex of exactly one side. The element e; is characterized by its
greates side h; and we denote max; h; by h.

For a given partition we define the finite element space

v(N)={vecCc()]|v|., € P(z);v(z) =0,Vz € 80}

Where P, (z) is the set of linear polynomials. A function v on ¢;
is represented by its values at vertices (nodes) of ¢;. The approx-
imation problem for (2.1) in the space V,, (1) is the following.

Find a function u, € V,, (1) such that

a(uy,v) = Q(v), VveV,(N) (2.3)

This problem has a unique solution. It the partition of 1 is regular
(see for exaple (3], p.132) and u € H?()NH} (Q1), then for s = 0,1

o —un [l < MA*™* [ u g

where u and u,, are the solution of the problems (2.1) and (2.3)
respectively, and M is a postitive constant independent of h.

Using the nodal basis of the space V), (1) we rewrite the prob-
lem (2.3) as the linear system

Au,, = .fh (2.4)
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where (Auy,vn)pv = a(un,vs), (fa,Vn)ry = Q(vs) and N is the
number of nodes belonging to 1. Form now on we use notation
that makes no distinction between the function v, belonging to
Vi (0) and the grid function (vector) v, if they are equal at the
given nodes.

3. The Preconditioning Algorithm

For the solution of the linear system (2.4) we shall use the
preconditioned conjugate gradient method (see [4] or [6]) of the
form

Bui*' = a4y (B— 141 ATB P A)uf + (1 — a4y, )Bui ™'+
a1 ATBTHf (k=1,2,..) (3.1)
Bu, =(B-1,ATB 'A)u) +,ATB'f,

where u, € RV is a given vector and the parameters o4, and
Te+1 are equals to

(r,,B“r,,)Ru
(B-TAB-'r,, AB-r,)pn ’

(k=0,1,2,...) (3.2)

Tk+1 =

Tee1 (T, B7ir)pw 1,-1
(s =41- -
ki { Tk (rk—lsB_lrk—l)R" ak} ’

and
T = ATB-l(AU: —f).

In the above expression by B we denote a symmetric positive
definit matrix. The construction of B we give in section 5. We
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assume that the partition of {1 is regular and the systems involving
matrix B is solved by a dirct method. Let w, (B) denote the cost of
the factorization of B, i.e. B = LU, by a direct method and w,(B)
- the cost of solving the system with B when the factorization
B = LU is given.

On the convergence of iterative method (3.1), (3.2) we can
prove the following theorem.

Theorem 1.: With the symmetric positive definit matrix B (given

in section 5) the computational work to find solution u, of (2.4)
with the accuracy ¢, i.e.

| un —up g1y € (3.3)

requires of order

w, (B) + wy (B)in(e™ ') (3.4)

arithmetic operations, where uf is computed by the method (3.1)
and (3.2) in k iterations.

4. The Construction of the Preconditioner

In this point we give the construction of the preconditioner
B from (3.1) in the form of bilinear form b(.,.). The algorithm
given here we use to build up a simple algorithm for solving the
equation Bz = y described in the point 5.

Let T’ denote a curve contained in 0 and consisting only the
certain sides of the triangular elements. It divides the region {1
into two subregions {1, and 2,. Suppose that the partition of 0
is regular and the number of pieces of I is finite when h tends to
zero (see figure 1.).
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. In order to construct the preconditioner, we have to define
three finite element spaces, related to V,(f1). Let V,(f1,) and
Vi (022) be the restriction of elements in V, (1) which vanish in {1,
and 1, respectively and in particular on I' and let V, (') consist
of those element in V, (2) which vanish in (1/T'. Let

a(u,v) = /{ Z 85 (7)0;ud,v + é(z)uv}dz

1,5=1
Vu,v € V,(0) (4.1)

where @,;,¢é € L™ (), a suitably choiched selfadjoint uniform el-
liptic bilinear form. That is it satisfies the following conditions:

i(u,v) = a(v,u),Vu,v € V, () (4.2)
n|lu ”:1;(0)S a(u,u),Vu € V,, ()

and

a(u,v) <in || u ”H(}'(n) |l v ”H;(n)’v“’v € Vi(N)
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where ; and ¥, are positive constants.
Set,
i(u,v) = @, (u,v) + &, (u,v),Vu,v € V,,(Q) (4.3)
on V, (02), where

a, (u,v) = /{Z d;;(z)0;ud;v + é(z)uv}dz
Yu,v € V,, () (k=1,2)

Let us now consider an arbitrary function w € V, (). We decom-
pose w on {1, as follows. Let w = w, + wy where w, € V, (1) and
satisfies

i, (w,,v) = ad,(w,v) YveV,(0)

Notice that w, is determined on 2, by the values of w on (1, and

a;(wy,v) =0 Vv € Vh(0,)

Thus on N, w is decomposed into a function wy which satisfies
the above homogeneous equations.

We now can define our preconditioner in the form of

b(u,v) = @, (u,v) + @, (u,,v,) Vu,v € V,(0) (4.4)

On the basis of (4.1) and (4.2) easy to prove, that this bilinear
form is also selfadjoint and uniform elliptic.

We shall show that the equations

b(w,v) =Q,(v) VveV,(N) (4.5)

where
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Q,(v) — /gvdz Vv € V,(f1) and g € L*(01)
O
given in the above form we can solve by solving related Galjorkin
equations on 2, and {1, separately.

The algorithm for the solution of (4.5) can be defined in the
following four steps:

(i) Consider v € V,,(Q;). Then (4.5) reduces to

a; (w,,v) =Q,(v) Vv eV,(0;) (4.6)

Since w, € V,,(N.) this is just the solution of a discrete Dirich-
let problem on f2,.

(ii) With w, known, we can write (4.5) as

a, (w,v) = Qg (v) — @z (w,,v,) =

= Q,(v) — @z (w,,v,) Vv eV,(0) (4.7)

The last equality is true because @;(w,,vy) = 0. The equations
(4.7) uniquely determine w on ;. In fact wiq, (€ V5(,)) is the
discrete solution of a mixed Neumann-Dirichlet problem on (1,.
So we have w on {1; and, in particularon I'.

(iii) We can now determine wy on f1; as the solution of a
homogeneous Dirichlet problem with values w;r on I’ and zero on
the rest of 311,. That is by solution of the equation

dz(we,v) =0  YveV,(0,). (4.8)
(iv) Let
w = w, +wy (4.9)

5. The Block Matrix Representation of the Precon-
ditioner
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In this section we will describe the preconditioner B in the
terms of block matrices. It will be shown that B - the matrix
representation of the bilinear form b(.,.) - has a special structure
and the process for solving (4.5) previously described may also
be seen as a block Gauss elimination process. We shall suppose
that we have the usual nodal basis for V,, () and the nodes are
partitioned into three subset correspondingly to those in T', 1,
and {1,. We order the vectors as follows

v = v1 (5.1)
V2

where v,,v, and v, corresponding to the nodes on I',}; and Q,,
respectively. So the equations (4.5) can be rewrite into the fol-
lowing linear system

(5.2)
By, + By B2—21 B& B,; By, Wo an
Bg'l Bll 0 wl = le
Bffz 0 B;, Wo ng

where the submatrices and the Q, vector are

|:B00 BOI}
Bg'l B11 5
(B22)i; = 2(Pis05)y 00 € V,(0,)

(Boz).',,‘ = a, (‘Pi,‘Pj)s w: €V, (F), p; EV), (nz)
(Qg): = Q,(w5), p; €Vi(0)

i, p; € Vi(fy)

il
o

I(Soi,(pj)a

[~}

In the expressions by ©,; we denote the elements of the nodal basis
Vi (02).
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Using (4.6) - (4.9) the algorithm for the solution of (5.2) we
can define in the following four steps.

(i) Solve the system

B;,; (wp)2 = Qq, (5'3)
This corresponds to the reformulation of the system
(5.2) into
B,, Bo, 0 Wy Qo — Bosz_gl Qs
Bg'l .311 0 w, = le (5.4)
Bg‘z 0 Bzg w2 Q‘“

(ii) Solve the system

B B w _ ng_BMBz—lQaz
B ][] =[O BB ] s

(iii) Solve the system

B;, (wH )2 = —ngwo (5-6)
because w, and w, are known.
(iv) Let
w=wy +w,. (5.7)

6. Proof of Theorem 1

To prove the Theorem 1 from section 3. we need a few auxil-

iary lemmas. Let N denote the number of the nodes belonging to
Q.

Lemma 1: Let (2.2) satisfies and suppose that the partition of 0

is regular and the number of pieces of T' (see section 4) is finite
when h tends to zero. Then
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61(Bv,v)RN S (A'U,v)RN S 62(BU,U)RN
Vv e RY (6.1)

where 6, and §, are positive constants independent of h, and A
and B matrices from (2.3) and (5.2), respectively.

Proof: By definition of A and B easy to see that (6.1) is equivalent
with the
6,b(v,v) < a(v,v) < §b(v,v), VveV,(N) (6.2)

inequalities. From the definition of a(.,.) it follows that

c1d(v,v) < a(v,v) < czé(v,v), Vv eV,(N)

where ¢; and ¢; are positive constants independent of h.
Since

¢ b(v,v) < ¢ a(v,v) <afv,v), VeV, (Q) (6.3)

we can choice 6; = ¢,. Thus we need to prove that

a(v,v) < 8;b6(v,v), Vv € V,,(Q)

i.e.

cza(v,v) < 6;b(v,v), Yv € V,(0) (6.4)

which follows from the inequality

az(ve ,vr) < esd, (v,v), Yv € V, () (6.5)

where c¢; independent of h. The inequality (6.5) is proved as fol-
lows: Let w an arbitrary function from V, (Q2). Then the restric-

tion of wy to {1, by definition is the solution of the homogeneous
discrete Dirichlet problem
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wgy =w on I

and

d; (wy ,v) =0, Yv € V4 (02)

From this we have that

g (wy ,wy ) < @y (v,v),

Ywe{ueV,(Q):yr =wr} (6.6)

where we used that @,(.,.) is a selfadjoint form and v — wy €
Vi (92;). Let choice w as a finite element extension of Wi, to 0
(see [7] Theorem 1). In this case the following estimation must

hold
| % lg: )< e | wllara,
where ¢, is a constant independent of h and w.

So using (6.6) and the ellipticity of d(.,.), we get

az(wH ’wH) < &2(‘I’"7’) < i “ w “:rl(n,)S
<oe |0 g1, =

= 17204 ” w ”H‘(ﬂ;)s 1;117204&1 (w,w)
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From this the inequality (6.5) follows with ¢; = ¥, ¢, and with
62 = ¢2(1 + ¢3) the inequality (6.4) satisfies too.
Lemma 2: Let the assumption of Lemma 1 is satisfied. Then

83 (Bv,v)gv < (B~ 'Av, Av)pn < 6(Bv,v)gw,
Vv e RY (6.7)

where 6; and §, are positive constants independent of h.

Proof: (i) The first inequality of (6.7) we can prove using the
Cauchy - Schwarz inequality in the following way

1 1
0 < (Bv,v)g~ < ——(Av,v)Ru < E—(Bl/zAv,Bllzv)Ru <
1

(B'/? Av, B*/? Av)}/? - (B*/?v, B*/?v, B*/?v)}/} Vv € RY

RN

1
6
i.e

1
(Bu,v)py < —

(B-IA‘!),A‘!))RN
6

From this we have that with §; = é? first inequality of (6.7) holds.
(ii) The B matrix is symmetric and positive definit thus

(B~ 'Av,Av)y~x =|| B~ Av |2n, VveERY

and

(B“l/zAv 2)

B_I/ZA — y<)RN —
R A
_ (Av,g)gw~

= maxX T
ser™ | B'/2g ||p~
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where ¢ = B~!/?z, Using the Lemma 1 and the fact that the
bilinear form a(.,.) is uniform elliptic we have

max Mn_ﬂ_ < max vy || v ||H;(n) ‘|l g ”H;(n)

oer® || B'/%g|gn T ger¥ | B*/2g ||p~ -
Av,v);/: . (Ag,g);/,f 1/2 1/2

v, axg}aﬁ B\ 7g [lon <y 6,'" - (Av,v)

< n,é; - (B, v);/,?

From this with 6, := 1?1?62 we get the second inequality of (6.7).
Proof (of Theorem 1): The convergence of method (3.1), (3.2) and
satisfaction of (3.4) follow from the uniform ellipticity of bilinear
form d(.,.) and the relations (6.7) (see [4], [6]).

Remark: Our method can be generalized easily for the higher order
elliptic operators and for the higher order finite elements too (see

[7))-
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