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ON THE DISCRETE LYAPUNOV PROBLEM
S.E. GYARMATI

It is well-known that constrained extremal problems of Lya-
punov type play an important role in optimization theory. In
particular, some optimal control problems can be reduced to a
Lyapunov problem, see e.g. [1].

In this work we are concerned with an infinite time discrete
version of the Lyapunov problem. Since the usual methods of
the continuous case cannot be applied to our problem, suitable
generalized measure-valued controls are introduced. The main
result gives a necessary and sufficient condition for the optimality
of a process. An existence theorem is also obtained.

1. Let k € N be a natural number and U C R* a non-empty
compact set. Denote by C(U) the set of all real-valued continuous
functions defined on U. C(U) is a separable Banach space with
respect to the usual operations and the norm || f ||:= maz{| f(z) |
| € U} (f € C(U)). We introduce the following notations:

L(CW)] = {h:N = C) |3 | A(t) < oo},

e [C(U)"] = {1: N = C(U)" | sup{]| u(t) |l.| t € N} < oo},
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where C(U)* is the topological dual of C(U) with the usual norm
(Il ll.)- If we take in I, [C(U)| and I, [C(U)*] the norms

hle=S R0 | (heLlc@),
resp. ‘

| 4 lleo := sup{]| u(t) l.€ R] |t € N} (4 €l [C(U)"])

then !, [C(U)] is a separable Banach-space, while l, [C(U)%] is a
Banach space.

Let us introduce the following mapping

F:l,[C(U)] - lL[c)],

(P, k) = 3 (u(t), h(t)) (1 € Lo [CU) ], b € LIC(D)).

It is easy to prove that F is an isometrical isomorphism between
the just mentioned spaces. Thus, in what follows, we shall identify
lo[C(U)*] and ,[C(V)]*.

Denote by U the set of all probability measures defined on
U. The elements of the set

U:={p€el,[CU)]|R, cU}
are called generalized controls. We shall assume that the set
Ucle [CU)]=kL[CU)

is endowed with the weak-star topology of I, [C(U)]*.
The first statement contains the basic properties of U.

Theorem 1. The set of the generalized controls is a conver
compact subset of I, [C(U)*].
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Proof. By the definition of a probability measure, the con-
vexity of U follows immediately. On the other hand, {,[C(U)] is
separable. Thus, by means of the known theorems of Bishop and
Alaoglu /see [2] 1.3.11., 1.3.12./ we get that the set

B(lo[C(U)]) i={n€lu[CU)] Il 1 [l <1}

is compact and metrizable with respect to the weak-star topol-
ogy. Since U C B(l,[C(U)*]), it is enough to prove that U is
sequentially compact in the mentioned topology.

To this end let (p,) : N — U be a weak-star convergent
sequence and lim(u,) =: v € B (l, [C(U)*]). Taking into consid-
eration the mapping F, it follows that, for all n € N, u, can be
identified with an element of {,[C(U)|*. Hence, if h € I,[C(U)]
then lim({g,,h)) = (v,h). For allt € N and p € C(U) let
h € 1,|C(U)] be defined as follows

e, if n=t
M= {8 menyy EN
Then (g,,h) = (p.(t),») and (v,h) = (v(t), p), from which, by
the weak-star convergence, we obtain that

lim (1 (8), ©)) ey = ((0),0).

If o € C(U) and p(u) > 0 then [ pdy, (t) > 0for allt € N. Since
U
lim(p,) = v therefore [dv(t) > 0, i.e. v(t) is a non-negative

U
measure for all t € N /[2] 1.5.5. (1)/.
Now we take the special case p(u) = 1(u € U) which leads to

v(O) = [ 10v(t) = ((2),0) = lim({n (1) WD) =

= lim(pa (8)(U))nen = lim(1) = L.
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Hence v € U as it was stated.

2. Let m € N and p; € [,[C(U)](i € 0,m) be fixed. Define
the functions % : U — R(i € 0,m) in the following way :

760 =3 [ o )dutr) G Tm).

We notice that this definition is correct since the series in the
above equality is absolute convergent. Furthermore, let X be an
arbitrary linear space over the real field R , X, C X a non-empty
convex subset and m',m € N,m' <m. Letg; : X, — R(i € 0,m)
be given functions which are convex for 1 € 0,m’ and affine for
t € m'+1,m. Using these notations we can formulate the so-
called discrete Lyapunov-problem in the following way:

minimize the function

(z,u) = Fo(u) +90(z) ((z, ) € Xo x U)
on the set
D:={(z,n) € Xo x U |Fi(n) + g:(2) <O (i €1,m),
F(k) +g:(z) =0 (iem +1,m)}.
The elements of D are called admissible processes. A solution
(Z,7) to the above problem is called an optimal process. In the

following theorem we give a sufficient condition for the existence
of a solution of the problem.

Theorem 2. Suppose that the above X is a topological vec-
tor space, X, 1s compact, D # 0,g; ts lower semi-continuous for
1 € 0,m' and continuous for 1 € m' + 1,m. Then there ezists a
solution of the discrete Lyapunov problem.

Proof. From the definition of ¥ and the assumptions on
g: (1 € 0,m) we get that the mappings

Xo X U3 (z,u) ~ F(u) (i €0,m),
Xo XU (z,pu) — gi(z) (1 €m +1,m),
Xox U (z,p) — Fi(n) +9:i(z) (fem +1,m)
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are continuous. Similarly, it follows that the functions

Xo xU>S (z,p) — g:i(z) (i€0,m)
are lower semi-continuous. This implies that the sets

Dy :={(z,n) € Xo x U | %(n) +g:(z) <0, 1 €1,m'}
Dy :={(z,n) € Xo x U | %(p) + ¢:(z) =0, s € m’' +1,m}

are closed, from which the closedness of D = D, N D, follows.
Furthermore, the set X, xU is compact with respect to the product
topology /see the assumptions of the theorem and Theorem 1/.
Therefore, the closed set D C X, x U is compact too. Applying the
classical Weierstrass theorem we get that the function (z,u) —
%o (1) + g0 (z) ((z, 1) € D) attains a minimum.

This proves Theorem 2.

3. In this section, following the usual method, we shall give a
necessary and sufficient condition for the optimality of a process.

Theorem 3.

i/ If (z,1) € X, X U ts a solution of the d:screte Lyapunov-
problem, then there ezist A, € R and A = (/\1, oy Am ) € R™ such

that H X #0 and

=0

min{ZX, /(p‘ (r)du(r) |pe U} =

+1=0

:Zm:,/p(rdu(r (r € N),

=0

(2) min{i XNg:(z) |z € Xo} = ij\\.-g,- (%),
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(3) X >0 (i€0,m),

(4) XE@) +a@)]=0 (eLm).

ii/ If (Z,8) € X, X U and there are X >0 and X € R™ such
that (1)-(4) are true, then (Z,5) is optimal .
Proof.

i/ First we prove the necessity. To this end we introduce the
following functions:

F:lo[C(U)] » R™ !

( i (r)du(r ) =

- (Z [ enyinto), .. Z / o (r)dus(r) )

Fi=Flu=(For.. . %)

It is clear that ¥ is linear, therefore the image R of the convex
set U is convex.

Since (Z, ) € X, X U is a solution, for all (z,u) € D, we have
%o (B) + 90(2) < %o (1) + go(2)..
Without loss of generality we can assume that
() 7 (R) + g0 (%) = 0.
For the proof we need the following set
C:={a=(ap,...,0,) ER™! | I(z,u) € D,

Fo(p) +90(2) < ao; F(u) +0:i(z) <y (1 €1,m');
Fu)+g(z)=as (1€m +1,m)}.

8

8
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First of all we prove that C is convex. Indeed, if we take o' =
(egs---rap,),a® = (a},...,0a% ) € C and O €]0,1] then there are
(z',u'), (z?,4?) € D such that for k € 1,2 we have

-7o(ﬂk) +go($k) < a:a

>af, if 1€e1,m
Fw)+a=*)q ™ L
af, if 1em+1,m.

On the other hand, the convexity of R5 provides an element
e € U for which

6)  Filwe) = OF(u') + (1- O)K(w*) (i€D;m).
Furthermore, since X, is a convex set thus there is an z¢ € X,

with z¢ = Oz! + (1 —©)z?. Taking into account our assumptions
on the functions g; (¢ € 0, 1), if follows that

(7) g:(ze) < Ogi(z') + (1 - ©)gi(z?) (i €0,m'),

(8) gi(ze) =Ogi(z') + (1 —O)gi(z?) (1 €m' +1,m).
On the basis of (6), (7) and (8) we get
Fo(ne) + 9o(ze) < Ol + (1 — ©)a?,

<0@a}+(1-06)2 (iel,m)
=0@al +(1-0)? (tem' +1,m),

7.'(#9)‘*‘9"(9){

i.e. ©a' + (1 — ©)a? € C. This proves the convexity of C.

Now we take into consideration that (Z, ) is a solution, (5)
implies that (aq,...,,) € C for all oy > 0,a; <0,
(t€1,m'), o; =0(i € m' + 1,m) . In particular C # 0.




134 S. E. GYARMATI

We know that O ¢ C, therefore 0 can be separated from C.
This means that there exist ; € R(i € 0,m) such that [ X; #0

1=0
and

(9) i (e €0).

Let € be an arbitrary positive number and j € 1, m’'. Clearly

m(o

,0,...,1,...0) € C.

a:= (
Thus, by (9) we have

S R = R + 3, 2 0.

1=1

Now we consider the following non-negative function defined on
the set of the positive numbers

0<s+—>e’):0 +'):,-.

For this function we have

(10) lign(e —€Xo +A;) =A; >0 (j€T,m).
If € stands again for a positive number, then

= (e,0,...,0) € C. Thus we get ina‘ = exo > 0, i.e.

Xo > 0. Hence, by (10), A; > 0 (¢ € 0,m'), as it was stated in (3).
Now we recall again that (Z,%Z) € D is an admissible , i.e.

<0 (1el,m),

=0 (tem' +1,m).

(11) 7:(B) + 4:(2) {
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This means that for alle > 0

' m

(5,0,...,%(A) + %(8),0,...,0) € C (i €T, m).

a

By the separation theorem applied above we get
Y Xioy =edo + X[F(B) + g:(2)] 20 (i€ T,m).
J=0

As above, we consider the function
0<em Ae+ N[F(R) +9(B)] (F€T,m)
and compute its limit at zero, which leads tc
NE@) + 6@ 20 (eTm).

Hence, to prove (4) it is enough to refer to (11) and (3). Thus we
obtain that

MA@ + 6@ =0 (eLm).

Let € > 0 and (z,u) € D be given and define « € R™*! as
follows
oo = % (1) + go(z) +¢,

a; :=F(u) +g:(z) (¢ €1,m).
Then /see the definition of C/ (ag,1,...,0,) € C, i.e.

Y NI (k) + 6:(2)] + €Xo 0.

If we take the function 0 < € — Z X[ (1) + g: (z)] + €Xo and its

limit at zero, then it follows that

(12) S RF (W) + a:()] 20

1=0
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Now let (z,u) := (Z,4) and take into account that (Z,z) € D.
Then by (5) and (4)

(13) i 2) +4(8)] = 0

is true. Therefore the equalities

min{i:iali(#) +9:(2)] | (2.4) € D} =

i X[ % (B) +g:(2)) =0

t=0

follow immediately from (13) and (14). Since the last equality
is equivalent to (1) and (2), the necessity part of our theorem is
proved.

ii/The proof of the sufficiency is very simple. Indeed, by the

assumptions, there exist a number Xo > 0 and a pair (Z,z) € D
such that the equality

min{ Z 1) +g:(z)] | (z,n) € D} = Z'\ [% (1) + 9:(Z)]

+=0

holds. However, X >0 (f € 1,m') thus, by the definition of D
and (4), we get that for (z,u) € D

X.' (7 (1) + g:(2)] =

e

XolF (1) + 9o (2)] >

0

SR 7 (W) + 0:(2)] 2

0

..
I

-,
I

[7(2) + 6:(2)] = Xo % (B) + 00 ()]

v
.ME
>)

-
I
5]
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This implies by X, > O for all (z, ) € D that

7o () + 90 (Z) < %o (1) + go(z)

i.e. (Z,7) is optimal and the proof of Theorem 3 is complete.

REMARK. Applying the above notations let us introduce the
Lagrange function

L:XoxUxRxR™ >R,

f’(x’#)AOs ZA [?s +g. .’D)]

+=0

By means of the Lagrange function the conditions (1) and (2) of
Theorem 3 can be formulated in the following way

min{L(z, 1, X0, ) | (z,1) € Xo x U} = L(Z,7, X0, A).
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