Annales Univ. Sci. Budapest., Sect. Comp. 9 (1988) 105-114

A MATHEMATICAL APPROACH TO
PROGRAMMING

AKOS FOTHI

Abstract. In this paper we deal with a mathematical foundation
of programming, providing a tool for teachers programming to deliver
”scientific knowledge” rather than ”the skills of the craft”. This goal
is hoped to be achieved by using mathematical tools, however, unlike
other authors /e.g. Gries [3]/, we shall not follow the standard formal-
ization of mathematical logics. We think that education of program-
ming should be separated from the research of programming related to

computer manipulations such as automatic program generation.

1. Introduction

We shall use a mathematical approach which is characteristic
to the classical branches of mathematics such as mathematical
analysis or probability calculus. First of all Mills” work [7] can
be considered as a starting point to this approach but, similarly to
[1,4,8,9] we use relations instead of functions, this way we can
deal with nondeterministic and parallel programs. Our purpose is
to set up a model that provides an unified mathematical treatment
of the most impertant fundamental concepts and knowledge of
programming. Talking of fundamental knowledge we have in mind
first of all Dijkstra’s [2] and Jackson’s [6] works as well as the
type, parallel programs and program transformation concepts.

This paper is devoted to some fundamental notions of the
mathematical model of programming. The two most important

106 AKOS FOTHI

concepts are the problem and the program. Their abstract def-
initions are given in terms of state space. For the definition of
solution /when a program is said to solve a problem/ establishing
the main connection between the problem and program we intro-
duce the notion of program function and study the equivalence of
prograrns.

2. Preliminary definitions and notions

Let N denote the set of all natural numbers, N, the set of all
nonnegative integers, Z the set of all integers, L the set of logical
values. 0 denotes the empty set.

a =< a,,...>, o; € A denotes a finite or infinite sequence

of elements of A.
a =< 0;,...,0, >,0; € A denotes a finite sequence of length
n of elements of A. | a | stands for the length of such a finite
sequence. We shall omit the symbol a; € A whenever it is clear
from the context.

Denote by A* the set of all finite and by A* the set off all
infinite sequences of elements of A. Put A** ::= A® U A*.

The reduced sequence red(a) corresponding to an a € A**,
is obtained by replacing each stationary subsequence by one of its
single element.

Let I ::= {3;,...,%,, } C N. The direct product of the sets
Ai,k € I is defined as

Xier A = {(a1,...0,) | VjE€[l,m]:a; € A;;}.

If A= Xyer Ai,B = Xiec;Ax and J C I C N, then B is called
a subspace of A.

Let A ::= X, ¢ H, and B ::= X, ; Ax where the sets A, (k €
I) are arbitrary, I ::= {t;,...,1, },J == {J1,-..,Jntand J C I C
N. In this case prg (a) ::= (a;,,...,a;,) denotes the projection of
a € A into the subspace B.

A MATHEMATICAL APPROACH TO PROGRAMMING 107

If C C A then
prp(C)={beB|JaeC:b=prg(a)},

ifai=<a,,...>,a; € A then
prp (@) == (pre (ay),-..),
if H C A** then
prg(H) :=={B€B** |B=prg(a)ANa€ H}.

Any subset of any direct product is called a relation. Further
we deal with relations which are subsets of the direct product of
two sets /binary relations/.

Let R C AX B where A and B are arbitrary sets. The domain
of the relation R is defined by

Dp i={a€ A| 3b€ B:(a,b) € R}.

The range of R is

Rr i={b€e B| Ja€ A:(a,b) € R}.

The rangeof Rata€ A is

R(a) ::={b€ B| (a,b) € R}.

A relation R is called function, if Va € A : R(a) has at most
one element. If Dg # A then R is a partial function.

3. The fundamental objects of the model

The concept of the state space has already been used in sev-
eral senses. For Mills the state space is a model of a von Neumann
type computer. Others, e.g. Dijkstra, associate this notion with
the problem to be solved and, in this way, the elements of the state
space are the possible states of the characteristics of the problem.

108 AKOS FOTHI

So the program is "outside” of the state space operating on it
(2,9,10].

In this paper the notation of the state space is used in the
second meaning.

DEFINITION D1. /State space/ Let A,,..., A, be an arbi-
trary finite or numerable sets. The set A := A; X A; X ... X A,
is called the state space. The components of the state space, i.e.
the sets A, are called /type/ value sets. This name refers to the
fact that each component of the state space is the range of a type
/" representing function” /.

We usually have to handle the components of the state space
separately. To this end we use variables.

DEFINITION D2. /Variable/ The projections v; : A — A;
of the space A = A; x ... X A, are called variables.

The notion of the state space makes it possible to define the
concept of a problem independently of any program.

DEFINITION D3. /Problem/ Any relation F C A X A is
called a problem.

A program is defined in terms of sequences; the working of
the program is characterized by a series of the elements of the
state space [1].

DEFINITION D5. /Program/ A relation S C A x A** is
called a program in the state space if

1/) Ds :A,

1t/ a€ Rs = a=red(a),

e/ (eeANa€eS(a))=>a =a.
Example

Let us consider the following program in the usual sense:
parbegin a := true; b := false; || a := false; parend.

Now, the state space has two components, each of them is the set
of logical values. For example, the sequences, associated with the

A MATHEMATICAL APPROACH TO PROGRAMMING 109

”point” /true, true/ of the state space are

a =< (true,true), (true, false), (false, false) >
B =< (true,true), (false,true), (true,true), (true, false).

The second part (i7) of the definition means that the program
during its normal functioning always gets into a new state. No
change of the state means an abnormal functioning of the program
or, in other words, getting out of the system.

We introduce the notion of program function in order to ex-
press the result of the functioning.

Marks

Let 7 : A* — A be a function which, with each sequence associates
its last element. 7(a) ::= ¢q.

DEFINITION D5. /Program function/ The program func-
tion of a program S is a relation p(S) C A x A defined as follows:
Dp(S) :={a€ A|S(a) C A"},
Va € Dp (S) :
p(S)(a) :={b€ A|Ja € S(a) : 7(a) = b}.

We also notice that there are other options to define the domain
of the program function taking a larger one

{a€ A|S(a) N A" # 0}
or a smaller one
{a€ A|S(a) Cc A*A| S(a) |< o0}

In the first case, the program function is called a liberal program
function [2], in the second case a bounded one [4].

We use the notion of solution instead of that of program cor-
rectness because the problem is defined independently of the pro-
gram. The concept of solution is similar to one used by Hoare [5]
for representation of types.

110 AKOS FOTHI

DEFINITION D6. /Solution/ The program S is said to solve
the problem F if

1/ DF C DP (S)a
i1/ Va € Dy : p(S)(a) C F(a).

Thus it may seem reasonable to consider two programs equivalent,
if their program functions are identical. The question of equiv-
alence, however can be handled in a finer way using the above
definition of the state space.

DEFINITION D7. /Extension of a problem/ Let the state
space B be a subspace of the state space A. The relation F' C
A X A is called the extension of the problem F C B x B, if

F' 2:={(z,y) € Ax A | (prs (z),prs (v)) € F}.

In other words, the extension of a problem means that new vari-
ables are introduced without any restriction on them.

DEFINITION D8. /Extension of a program/ Let the state

space B be a subspace of the state space A, namely A ::= X,¢, A;,
B = X;c;A; and J C I C N. Denote by K the set I — J, let
B' ::= X;ecx A; and let S be a program on the state space B. The

program S’ C A X A is called the extension of the program S onto
the state space A if

Vac A: S'(a) :={a€ A** | prg(a) € S(prs (a))A
Vie D, :prg (e;) = prs-(a)}.

The extension of a program defined on a subspace gives rise to
a program which operates on the subspace in the same way as
the original program does and it does not change the rest of the
components of the state space.

In definitions D7 and D8, we take one of the possible exten-
sions, the trivial one.

A MATHEMATICAL APPROACH TO PROGRAMMING 111

DEFINITION D9. /Equivalence of programs/ Two programs
/their state spaces may be different/ are called equivalent on a
common subspace B, if the projections of their program functions
onto B coincide.

The extensions of problems and programs make it possible for
us to understand two practical things theoretically. One of them
is, that during program writing, we often need to introduce new
variables, that is extend the state space. In this case the program
will not solve the original problem, but its extension. The other
one is it in order, to solve a subproblem we use a procedure, a
program defined on a state space has common components with
the state space of the problem. In this case the program /possibly
the problem too/ has to be extended.

The following theorems are related to these topics.

Theorem 1. Let A be a state space, B a subspace of A. Let
F C B x B be a problem, S C B x B** a program, F' and S’ the
respective extenstons of F and S onto the state space A. Then S
solves F f only if S' solves F'.

Proof.)
1/ Suppose that S solves F that is, Dy C Dp(S) and Vb € Dp :
p(S)(b) C F(b). (D7) implies Dg: = pr;*(Dr). By (D8), S'(a) C
A* if only if S(prp(a)) C B*, that is, Dp (S') = prz'(Dp (S))-
Consequently Dg: C Dp (S'). Also Va € Dg: : F'(a) =
prg' (F(prs(a))) and p(S')(a) C prz'p(S)(prs(a)). Since S
solves F consequently p(S)(prs (a)) C F(prs(a)) and so p(S’)(a)
C F'(a), that is, S’ solves F'.
2/ Let S’ solve F', that is, D C Dp (S') and Va € Dr : p(S')(a) C
F'(a) and by (D7) and (D8), we have F = prg(F') and S =
prp (S'). The projection do not change the length of a series, so
p(S) = prs (p(S')). Therefore Dy C Dp(S) and Vb € B : p(S)(b) C
F(b), which means that S solves F. O

Theorem 2.Let A be a state space and B be a subspace of

112 AKOS FOTHI

A. Let G C A X A be a problem, S C B x B** a program and
S' the extension of S onto A. In this case, sf S’ solves G then S
solves H = prg (G).

Proof. Let S’ solve G, that is, Dz C Dp(S')andVa € Dg :
p(S’)(a) € G(a). Since p(S) = prs(p(S’)), Da C Dp (S) andVb €
Dy : p(S)(b) C H(b), we have that S solves H. O

The inverse of this theorem does not hold, although it would
be convenient to apply it to a procedure. The next theorem gives
the condition of invertibility of the previous theorem.

Theorem 3. Suppose that A = X;e1Ai, B = X,e;A;,J CICN
and K =1—-J, B' = XycxAx. Let G C A X A be a problem,
S C B x B** a program and S' be the eztension of S onto A.
In this case, if S solves H = prg(G) Vz,y € Dg : if prp(z) =
prs (y) then prg(G(z)) = prs(G(y)) and V(a,d) € G : (a,c) €
G, where prg(c) = prg (b) and prg:(c) = prp:(a) then S’ solves
G.

Proof. From the proof of Theorem 2. it is clear that, if D,(S) D
Dprg (G), then Dp (S') D Dg. All we have to check is that

Va € Dg : p(S')(a) C G(a). Let @ € Dg and b € p(S’)(a). Then
the relation prp (b) € p(S)(prs (a)) holds, and by condition, the
latter is contained in H(prg (a)). Consequently the components of
b in B’ have to correspond to G(a), but they are equal to prp:(a)
by the definition of the extension. O

References

[1] BEST, E., Relational Semantics of Concurrent Programs,
In: Formal Description of Programming Concepts II. North-
Holland, Amsterdam, 1978.

(2] DIJKSTRA, E.W., A Discipline of Programming Prentice-
Hall Inc, Englewood Cliffs, New York, 1976.

[3] GRIES, D., The Science of Programming Springer Verlag,
Berlin, 1981.

A MATHEMATICAL APPROACH TO PROGRAMMING 113

[4] GUERREIRO, P., Another characterization of weakest pre-
conditions, In: Internal Symposium on Programming
Springer- Verlag, Berlin, 1982.

[6] HOARE, C.A., Proof of correctness of data representations
Acta informatica 1(1972), 271-281

[6] JACKSON, M.A., Principles of Programming Design Aca-
demic Press, New York, 1975.

(7] MILLS, H.D., Mathematical functions for structured pro-
gramming, SC 72-6012, IBM, Gaithersburg, Md 1972.

(8] SANDERSON, J.G., A Relational Theory of Computing
Springer-Verlag, Berlin, 1980.

[9]1 FOTHI, A., Unu matematika modelo por programado In:
Teorsay kaj Praktikay Problemaj de la Programado, INTER-
COMPUTO, Budapest, 1982.

[10] FOTHI, A. and VARGA, Z., Programming via recursive

functions in Hungarian. In: Alkalmazott Matematikas Lapok
6 (1980) 331-336.

(Recived November 26, 1987)

AKOS FOTHI
Dept. of General Computer Science
H-1088 Budapest, Mizeum krt. 6-8.
HUNGARY

