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CONNECTION BETWEEN THE BMO-
AND THE K,-SPACES

BUI KHOI DAM

1. Introduction

It is well-known that the dual of the Hardy space X, is the
BMO-space [4]. The dual space of the Hardy space X,, where
1 < p < 2 has been investigated by Garsia, A. M. [6]. Mogyorddi,
J. [7] and the author of the present note [2] have investigated
the dual space of the Hardy space generated by Young functions
®. This paper consists of two parts. In the first part we show
that the dual of the space X, is the space Xy, where (®,¥) is
a pair of conjugate Young functions, ® has finite power and has
the form ®(z) = ®,(z?), where ®, itself is also a Young function.
In the second part we prove that the BMO-space can be approxi-
mated by the class of the so called Ky-spaces. Theorem 3.2. is a
generalization of some results of [1] and [7].

2. Basic notations and definitions

Let o(t) be a nondecreasing and left-continuous function de-
fined on [0,+00) such that ©(0) = 0 and ) lim (t) = +oo. For
— + oo
z > 0 define
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Then @ is a convex, continuous and increasing function. @ is
called Young function. The power of the Young function @ is
defined by the formula

p = sup[zp(z)/®(z)] .

z>0

The generalized inverse function v of the function  is defined
as follows
0, ifu=0
¥(v) = {sup(s >0:p(s) <u), ifu>0

It is easy to see that ¢ is also nondecreasing, left-continuous and
lim (u) = +o0o. Then the Young function

% — + oo

U(z) :j¢(u)du

is called the conjugate function of the Young function ®. Its power
is defined as that of ® by the formula

o = suplz()/¥()
z>
Let (2, 7, P) be a fixed probability space. Denote
Ly(0,7,P) ={X: X:Q > R; X if #—measurable} .

DEFINITION 2.1. Let & be a Young function. The Orlicz
space generated by ® is defined as follows

Lq, =L¢(ﬂ,7,P)={X€L0 :3a>0:E(I>(a"1 |X|)S1}
If X € L, then the Luxemburg norm of X is defined by

| X|le =inf{a >0: E®(a™' | X |)) <1}.
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It is well-known that L, equipped with the norm ||-||¢ is a Banach-
space. Further,

[Xlle < sup E(XY) <2[X]|s .

Ev(lY])<1

where ¥ is the conjugate Young function of the function ® (see

[8]). The quantity sup E(XY) is called the Orlicz-norm of
Ev(lY|)<1
X.

We refer to Krasnoselskii and Rutickii [6] for a complete
treatment of the theory of Young functions.

Let ¥, C % ... be an increasing sequence of subsigma-fields
of F. We suppose that ¥ = o(UZ_, #.). Consider the random vari-
able X € L, (01, #, P) and the martingale X, = E(X | %,), n > 0,
where for the sake of commodity we suppose that X, = 0 a.s. De-
noted; = X; — X;_,, 121, d, =0.

DEFINITION 2.2. (see [7])

We say that the random variable X € L, belongs to the
Hardy-space ¥; generated by the Young function @ if the

quadratic variation S = (3. d?)'/? belongs to L, . We define

1=1
1 Xllxs = lIS]le

The space ¥ equipped with the norm || - ||, is a Banach space.

3. The dual of the Hardy space X,

In [2] we proved that the dual of X is Xy in the case when
both ® and ¥ have finite power (in this case the authors of [1]
have shown that the Xy -and the Ky -spaces coincide).

In this paper we shall prove that under some additional condition
imposed on the function ®, our result remains valid without the
condition that ¥, the conjugate of ®, has finite power

We begin this section by proving the following



54 BUI KHOI DAM

Lemma 3.1. Let (®,V) be a pair of conjugate Young func-
tions. Suppose that ® has the form ®(z) = &, (2?) where ®, itself
1s a Young function and ®, has finite power p.Let

6*‘(45 = {@ = (@n)nzl : en € L<b (ﬂ,?;,,P); ”6”6)(. =

=11(D_ ©2)"/*||ls < +oo0}
n=1

and let A(©) be a bounded and linear functional on X, s.e.
| A(@) |[< B:-||O|lsxy » VO E 6Ny ,

where 0 < B < +00 is a finite constant. Then there exists o €
6My satisfying the conditions

8

10D 02)! |l < vPB
n=1

oun)
w
o
Lz
]

such that -
=Y E(©,:0,), VYO EbX,.

Proof. First we remark that ® has finite power if and only
if so does ®,. Now for any fixed integer n > 1 and any X €
Ly (0, %,,P)let ©x = (0F,0X,...), where ®f = X,if 1 = nand
©F =0, if ¢+ # n. Obviously, ©x € 6X; and ||Ox |sx, = || X]le-
Then

| A(@x) |< B||Ox [lsxe = Bl X][e
Since @ has finite power, there exists 0, € Ly (1, #,, P) such that
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A(®x) = E(X-0,), VX€Ly(0,%,P).

Consider now an element 0("*) = (0,,0,,...), for which ©; =0
if + > n. By the linearity of the functional A we have

A(O™) ZE@U)

where 0; € Ly (0, %, P), ¢ =1,2,.... From the boundedness of A
it follows that

| A(©) —A©@™) IS BII( ) ©F)'|ls

i=n+1

The right-hand side of this inequality tends to zero as n — +oo.
Consequently, we deduce

n— + oo n— + oo

A@) = lim A(©®™) = lim ZE(@ 0.) =) E(6,0) .
=1
We prove that

=1

For this purpose we observe that the space § ¥ can be imbedded
into the following larger space:

3)‘(@ ={(") = (@n)nZI 10, € Ly (Q’T’P)’”e“;)lo -

=[1(Q_©2)""*[ls < +o0}
1=1

Then the functional A can be extended onto 3)&, as follows:
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(3.2) = Z O, | .)o.], VO €8X,

This can be done since we can show that (E(©, | ,)).>1 €
§Xo if (8n)ns1 € BXo .
Indeed, denote

=1(>_ ©2)""*|ls
n=1

We can suppose without any restriction that a > 0. Then

©o

(3.3) E[‘I’l(a—2 . i ei)] = E[Q(a—l Z )1/2)]

So Y ©?2 belongs to Ly, and || 3. ©?||s, < a®. From the in-
n=1 n=1
equality E?(©, | ¥,) < E(©?2 | #,) we deduce that

E(Ql[ ~1g-2 iE’(On |?,,)]) <
<B(o[r'a" Y Blez | 7))

holds. On the other hand using the convexity inequality of
Burkholder-Davis-Gundy (see [3]) we can write (remarking that
the power of ®, is finite)

(3.4)

oo

(3.5) E(<I>1[ BRIV {CH |;,,)]) < E[@l(a'z ie:)] .

n=1
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Combining (3.3), (3.4) and (3.5) we have

E[e,(p a2 i[E(e,. EARIES!

n=1

In the language of ® this can be written in the form
E[(p /%0 [i E*®, | % ] )]
- E(@l[ ~1g-2 ZE"‘(@,. EA )])

This means that

PEACH 35,)]”2 € Lo

and

I[YS B2 e 1 7))l < vB-a= vAI(Y 02) ]l

Then we can estimate (3.2) as follows

(36)  1A©) I< yF BI(Y. 02)/7]ls, VO € 3.

n=1
We use the Orlicz norm to estimate the Lg-norm of ( E 02)t/2,

Denote 42 = )_ o0Z%. Then
n=1

Ille = sup  E(Xn)
E®(|X]|)<1
X€Lg(0,7,P)
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Define

y={X7h ify#0
0, ify=0.

Consider the element (") = (Yo,,...,Y0,,0,0,...). Obviously,
O*) € §) and ||©™) I3, <1, since

B (2] veor) ")) < Ble( X D] <1.

We can write

E(X~) =E(Y~?) ZE (Y o?)

_ ZE[E(YU,- | %)oi| = A(@™).

1=1

Using (3.6) we have

| E(X~) |=| A(@™) < V5 B|O™]|5, < - B.

Consequently,
Ile <P B
and, letting n — 400, finally we have
1D 02)*lle < /- B.
n=1

For arbitrary © = (0,,0,,...) € §X; define the element
é = (0,91,62,...) € 6)‘1(&
and consider the functional A defined by the formula

K(©) = A(B), VO € 6X,.



THE BMO AND K,-SPACES 59

Then A is also a bounded and linear functional on § X, since
| A(©) |=| A(®) |< B||®llsx, = Bl|Olsx.

As we have shown above, there exists p = (gn)n>1 € 0¥y

satisfying ||( }_ #2)'/?|l« < /p- B such that
n=1

(3.7) A(©) = i E(©.u,).

But
A(©) =A(O) = Z E(©,0,41) =
(3.8) o
=Y E[6. E(on:: | %)]

From (3.7) and (3.8) we deduce that
E(0n+1 | 7)) =pn  as.

This implies

I

oo

@uer 17)] e <1 Blor | %) [+

3

o
) 1/2
Z n+1i}r ] ”W SB+\/5'B:(\/1—’+1)B

,____‘

Therefore, the proof is complete.
Now we present the main result which we formulate in

Theorem 3.2. Let (®,¥) be a pair of conjugate Young
functions.
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a/ For every X € Np,Y € Xy we have for arbitraryn > 1
| BE(XoYa) [<2(Xallne 1Yallx -

Further, lim E(X,,Y,) ezists, it is finite and

n— + co

| lim E(X,Y.) < 2([X]lx. [[Y]lx, -

n— + oo

b/ Suppose that ® has the form ®(z) = ®,(z?), where ®,(z)
itself 1s a Young function having finite power p. If F 1s a bounded
and linear functional on X4, i.e.

| F(z) |< B||X||x, (B > 0 constant)
then there ezists Y € My such that ||Y ||y, < v2(24/p+1)B and
lim E(X.Y,)=F(X), Vze&Xs.

n— + oo

Proof. a/ For any X € ¢, Y € Xy denote
AX; =X, - X;_1,1=12,...; AY;=Y,-Y;_,, 7=12,...
The Cauchy-Schwartz inequality gives

n

(Z ax.av)’ < [Yaxy][Yovy]

1=1 i=1

and from this by Hélder’s inequality for conjugate Young functions

|B(X,Y,) =] Y. E(AXAY,) |= B} AXAY,) [<

=1 1=1

< B(((0x 13 (an ) <

<l (S (X1 BT
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It is easy to see that [E(X,Y,)].>: is a Cauchy sequence,
since for m > n we have

|B(Xn Y) ~ B(X. Vo) [=| E( 3. AX.AY) [

t=n+1
<ol 3 @x] el X %)) e — o
i=n+1 j=n+1

as n — +oo. Therefore lim E(X,Y,) exists and

n— + o0

| lim E(X,Y,) [<2([X]|xe [V lxe -

n— + oo
b/ Suppose that F is a linear functional on ¥ such that
| F(X) |< BllXllx,, VX €Xe.

Then X, can be inbedded in the space § X, and the definition of
F can be extended onto 6 X, with the same bound as that of F.
By Lemma 3.1. there exists 0 = (0, )n>1 € 6§ Xy such that

F(X) = i E(AX,0,).

n=1
Consider the martingale

n

Y, = Z[a.- — E(o; | }’.-_1)].

1=1

Then (Y,),.>: is a Cauchy sequence in Xy , since

Yo —Yallwa =11 32 (AYP72]ls <

i=n+1l

<VE(IL Y ol 11 Y BHo] Fa) ) =0

i=n+1 i=n+1
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So, Y,, must converge to

Y = i[o,' - E(U.' l -7-‘—1)]

belonging to Xy . Finally,

¥l < VE(ICS @)l + 1130 B (o | 57l ) <
< V2[/pB + (y/p+ 1)B] = V2(2y/p + 1)B.

This completes the proof.

The BMO-space and the K;-spaces

In this section we present the connection between the BMO-
space and the Kg-spaces. We show that the BMO-space can be
approximated in some sense by the class of the Kg-spaces. We
recall some definitions.

DEFINITION 4.1.

a/ Let X € L,. Consider the martingale
X, =E(X| %), n>0,z, =0 as. We say that X belongs to
BMO iff

sup [[E(| X — X1 | | F)llee < +o0.

n>1

b/ Let ® be a Young function and let X € L,. Consider the
set

Iy ={v:Y€Ls, E(| X— X1 | 7)) < E(v] 7.) as., Yn > 1}.
We say that X € K, iff 'y is non empty and in this case we set

[ Xllke = inf [le
WGPX
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The following theorem shows that the Kg-space is the direct
generalization of BMO.

Theorem 4.1. Let (2, ¥) be a pair of conjugate Young func-
tions. Suppose that ¥ has finite power q. Then X € Ky if and
onlysf p* =supE(| X — X._, | %.) € Ly and

n>1

[Xllke <118 lle < gl Xllxe-

Proof. If f* € L; then
E(| X-X._.]|| %) < E(B* | %) a.s. Consequently, X € K,
and || Xk, <|8*[e.

Conversely, suppose that X € Ks. Then for all n > 1 we
have

E(| X=X, || %) <E(N|F)as.,

where v € I'y is arbitrary. Let 4* = sup E(v | #.). Then by the
n>1
maximal lemma (see [9]) 4* € Ly and

17"lle < gsup [[E(y | F)le < allvle-

On the other hand

B*=swE(| X -Xa_r || Fa) <

n>1
This implies that 8* € Ly and

18 lle < Il

Since the above inequality holds for every ~ belonging to I'? we
deduce that

|¢ < ‘1”’7”¢

18°
This completes the proof.

o < QHX”KO'
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Theorem 4.2. Let Y denote the class of all Young functions
W whose conjugate Young function ® has finite power. Then

BMO = () Ky .
vey
Proof. Obviously, BMOC ()] Ky. Now we suppose that
vey
Y ¢BMO. THis means that 8* =supE(|Y -Y,_, || #.) € L
n>1
We can suppose that P(8* < +o00) = 1, since in the contrary
case * ¢ Ly whatever be the Young function ¥. Denote a, =

P(B* > n). Then a, > 0 and a, | 0 as n — +o0o. We define the
function

U(z) = / (t)dt

as follows: let (0) = 0, ¥(1) = 2/asa,...,¥(n) =2/a(,41)2,----
Further, let 1(t) be linear in every interval [n,n + 1]. Conse-
quently, ¥(z) is a Young function. We shall show that §* ¢ L.
For each positive integer k > 1 we have

E[W(k~8%)] > E[(k™*6*)x(8" > ¥*)] >
> W(K)P(B* > K*) = ¥(K)ay»

By the definition of ¥ we can write

(k) = /z,b(t)dt > / B(t)dt > p(k — 1) = 2/aps .

Therefore,
E[¥(k='8*)] > ¥(k)ay: > (2/axs)axs = 2.

This means that 8* ¢ Ly and by Theorem 4.1. Y ¢ Ky provided
that ® has finite power.
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Now, if the conjugate Young function ® of the function ¥
has infinite power, then remarking that sup [p(2z)/p(z)] =a <
0<z<1

+o00 we can define another function ¢; as follows:

v(z) ifo<z<l1.
©1(z) = < o(2) if p(z) < ap(z/2) and 2° < z < 2°*1,
p(z/2) if p(z) > ap(z/2) and 2° <z < 2°+1,

z

2.() = [wi()as

0

Obviously, ®, has finite power and @, (z) < ®(z), since p, (z) <
©(z). This also implies that ¥, (z) > ¥(z), where ¥, (z) is the
conjugate function of the function ®, (z). Consequently, 3* & Ly,
which means that Y ¢ [ Ky

vey
This proves the assertion.
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