CONNECTION BETWEEN THE BMO-AND THE K_•-SPACES

BUI KHOI DAM

1. Introduction

It is well-known that the dual of the Hardy space \mathcal{X}_1 is the BMO-space [4]. The dual space of the Hardy space \mathcal{X}_p , where $1 \leq p \leq 2$ has been investigated by Garsia, A. M. [5]. Mogyoródi, J. [7] and the author of the present note [2] have investigated the dual space of the Hardy space generated by Young functions Φ . This paper consists of two parts. In the first part we show that the dual of the space \mathcal{X}_{Φ} is the space \mathcal{X}_{Ψ} , where (Φ, Ψ) is a pair of conjugate Young functions, Φ has finite power and has the form $\Phi(x) = \Phi_1(x^2)$, where Φ_1 itself is also a Young function. In the second part we prove that the BMO-space can be approximated by the class of the so called \mathcal{K}_{Φ} -spaces. Theorem 3.2. is a generalization of some results of [1] and [7].

2. Basic notations and definitions

Let $\varphi(t)$ be a nondecreasing and left-continuous function defined on $[0, +\infty)$ such that $\varphi(0) = 0$ and $\lim_{t \to +\infty} \varphi(t) = +\infty$. For $x \ge 0$ define

$$\Phi(x) = \int\limits_0^x arphi(t) dt \; .$$

Then Φ is a convex, continuous and increasing function. Φ is called Young function. The power of the Young function Φ is defined by the formula

$$p = \sup_{x>0} [x\varphi(x)/\Phi(x)] .$$

The generalized inverse function ψ of the function φ is defined as follows

$$\psi(u) = \begin{cases} 0, & \text{if } u = 0 \\ \sup(s > 0 : \varphi(s) < u), & \text{if } u > 0 \end{cases}$$

It is easy to see that ψ is also nondecreasing, left-continuous and $\lim_{u\to +\infty} \psi(u) = +\infty$. Then the Young function

$$\Psi(x) = \int\limits_0^x \psi(u) du$$

is called the conjugate function of the Young function Φ . Its power is defined as that of Φ by the formula

$$q = \sup_{x>0} [x\psi(x)/\Psi(x)]$$

Let (Ω, \mathcal{F}, P) be a fixed probability space. Denote

$$L_0(\Omega, \mathcal{F}, P) = \{X : X : \Omega \to R; X \text{ if } \mathcal{F}\text{-measurable}\}$$
 .

DEFINITION 2.1. Let Φ be a Young function. The Orlicz space generated by Φ is defined as follows

$$L_{\Phi} = L_{\Phi}\left(\Omega, \mathcal{F}, P\right) = \left\{X \in L_0 : \exists a > 0 : E\Phi(a^{-1} \mid X \mid) \leq 1\right\}$$

If $X \in L_{\Phi}$ then the Luxemburg norm of X is defined by

$$||X||_{\Phi} = \inf\{a > 0 : E\Phi(a^{-1} | X |)) \le 1\}$$
.

It is well-known that L_{Φ} equipped with the norm $\|\cdot\|_{\Phi}$ is a Banach-space. Further,

$$||X||_{\Phi} \leq \sup_{E |\Psi|(|Y|) < 1} E(XY) \leq 2||X||_{\Phi}.$$

where Ψ is the conjugate Young function of the function Φ (see [8]). The quantity $\sup_{E \Psi(|Y|) \le 1} E(XY)$ is called the Orlicz-norm of X.

We refer to Krasnoselskii and Rutickii [6] for a complete treatment of the theory of Young functions.

Let $\mathcal{F}_0 \subset \mathcal{F}_1$... be an increasing sequence of subsigma-fields of F. We suppose that $\mathcal{F} = \sigma(\bigcup_{n=1}^{\infty} \mathcal{F}_n)$. Consider the random variable $X \in L_1(\Omega, \mathcal{F}, P)$ and the martingale $X_n = E(X \mid \mathcal{F}_n)$, $n \geq 0$, where for the sake of commodity we suppose that $X_0 = 0$ a.s. Denote $d_i = X_i - X_{i-1}$, $i \geq 1$, $d_0 = 0$.

DEFINITION 2.2. (see [7])

We say that the random variable $X\in L_1$ belongs to the Hardy-space \mathcal{H}_Φ generated by the Young function Φ if the

quadratic variation $S=(\sum\limits_{i=1}^{\infty}d_i^2)^{1/2}$ belongs to L_{Φ} . We define

$$||X||_{\mathcal{X}_{\Phi}} = ||S||_{\Phi}$$

The space \mathcal{H}_{Φ} equipped with the norm $\|\cdot\|_{\mathcal{H}_{\Phi}}$ is a Banach space.

3. The dual of the Hardy space \mathcal{H}_{Φ}

In [2] we proved that the dual of \mathcal{H}_{Φ} is \mathcal{H}_{Ψ} in the case when both Φ and Ψ have finite power (in this case the authors of [1] have shown that the \mathcal{H}_{Ψ} -and the \mathcal{K}_{Ψ} -spaces coincide).

In this paper we shall prove that under some additional condition imposed on the function Φ , our result remains valid without the condition that Ψ , the conjugate of Φ , has finite power

We begin this section by proving the following

Lemma 3.1. Let (Φ, Ψ) be a pair of conjugate Young functions. Suppose that Φ has the form $\Phi(x) = \Phi_1(x^2)$ where Φ_1 itself is a Young function and Φ_1 has finite power p.Let

$$egin{aligned} \delta \mathcal{H}_{\Phi} &= \{\Theta = (\Theta_n)_{n \geq 1} : \Theta_n \in L_{\Phi} (\Omega, \mathcal{F}_n, P); \|\Theta\|_{\delta \mathcal{H}_{\Phi}} = \ &= \|(\sum_{n = 1}^{\infty} \Theta_n^2)^{1/2}\|_{\Phi} < + \infty \} \end{aligned}$$

and let $\Lambda(\Theta)$ be a bounded and linear functional on $\delta \mathcal{H}_{\Phi}$, i.e.

$$|\Lambda(\Theta)| \leq B \cdot \|\Theta\|_{\delta \mathcal{H}_{\Phi}}, \quad \forall \Theta \in \delta \mathcal{H}_{\Phi},$$

where $0 < B < +\infty$ is a finite constant. Then there exists $\sigma \in \delta \mathcal{X}_{\Psi}$ satisfying the conditions

(3.1.)
$$\| (\sum_{n=1}^{\infty} \sigma_n^2)^{1/2} \|_{\Psi} \leq \sqrt{p} B$$

$$\| \left[\sum_{n=1}^{\infty} E^2(\sigma_n \mid \mathcal{F}_{n-1}) \right]^{1/2} \|_{\Psi} \leq (\sqrt{p} + 1) B,$$

such that

$$\Lambda(\Theta) = \sum_{n=1}^{\infty} E(\Theta_n \cdot \sigma_n), \quad \forall \Theta \in \delta \mathcal{X}_{\Phi}.$$

Proof. First we remark that Φ has finite power if and only if so does Φ_1 . Now for any fixed integer $n \geq 1$ and any $X \in L_{\Phi}(\Omega, \mathcal{F}_n, P)$ let $\Theta_X = (\Theta_1^X, \Theta_2^X, \ldots)$, where $\Theta_i^X = X$, if i = n and $\Theta_i^X = 0$, if $i \neq n$. Obviously, $\Theta_X \in \delta \mathcal{H}_{\Phi}$ and $\|\Theta_X\|_{\delta \mathcal{H}_{\Phi}} = \|X\|_{\Phi}$. Then

$$|\Lambda(\Theta_X)| \leq B \|\Theta_X\|_{\delta X_{\bullet}} = B \|X\|_{\Phi}$$

Since Φ has finite power, there exists $\sigma_n \in L_{\Psi}(\Omega, \mathcal{F}_n, P)$ such that

$$\Lambda(\Theta_X) = E(X \cdot \sigma_n), \quad \forall X \in L_{\Phi}(\Omega, \mathcal{F}_n, P).$$

Consider now an element $\Theta^{(n)} = (\Theta_1, \Theta_2, ...)$, for which $\Theta_i = 0$ if i > n. By the linearity of the functional Λ we have

$$\Lambda(\Theta^{(n)}) = \sum_{i=1}^n E(\Theta_i \sigma_i)$$

where $\sigma_i \in L_{\Psi}(\Omega, \mathcal{F}_i, P), i = 1, 2, \ldots$ From the boundedness of Λ it follows that

$$|\Lambda(\Theta) - \Lambda(\Theta^{(n)})| \leq B \| (\sum_{i=n+1}^{\infty} \Theta_i^2)^{1/2} \|_{\Phi}.$$

The right-hand side of this inequality tends to zero as $n \to +\infty$. Consequently, we deduce

$$\Lambda(\Theta) = \lim_{n \to +\infty} \Lambda(\Theta^{(n)}) = \lim_{n \to +\infty} \sum_{i=1}^{n} E(\Theta_{i}\sigma_{i}) = \sum_{i=1}^{\infty} E(\Theta_{i}\sigma_{i}).$$

We prove that

$$\left(\sum_{i=1}^\infty \sigma_i^2
ight)^{1/2} \in L_\Psi$$
 .

For this purpose we observe that the space $\delta \mathcal{H}_{\Phi}$ can be imbedded into the following larger space:

$$\begin{split} \widehat{\delta} \mathcal{H}_{\Phi} &= \{ \Theta = (\Theta_n)_{n \geq 1} : \Theta_n \in L_{\Phi}(\Omega, \mathcal{F}, P), \|\Theta\|_{\widehat{\delta} \mathcal{H}_{\Phi}} = \\ &= \| (\sum_{i=1}^{\infty} \Theta_i^2)^{1/2} \|_{\Phi} < + \infty \} \end{split}$$

Then the functional Λ can be extended onto $\widehat{\delta} \mathcal{H}_{\Phi}$ as follows:

(3.2)
$$\mathbf{\Lambda}(\Theta) = \sum_{n=1}^{\infty} E[E(\Theta_n \mid \mathcal{F}_n)\sigma_n], \quad \forall \Theta \in \widehat{\delta} \mathcal{H}_{\Phi}$$

This can be done since we can show that $(E(\Theta_n \mid \mathcal{F}_n))_{n \geq 1} \in \delta \mathcal{H}_{\Phi}$ if $(\Theta_n)_{n \geq 1} \in \widehat{\delta} \mathcal{H}_{\Phi}$. Indeed, denote

$$a = \|(\sum_{n=1}^{\infty} \Theta_n^2)^{1/2}\|_{\Phi}$$

We can suppose without any restriction that a > 0. Then

$$(3.3) \quad E\left[\Phi_1(a^{-2}\cdot\sum_{n=1}^{\infty}\Theta_n^2)\right]=E\left[\Phi\left(a^{-1}(\sum_{n=1}^{\infty}\Theta_n^2)^{1/2}\right)\right]\leq 1.$$

So $\sum_{n=1}^{\infty} \Theta_n^2$ belongs to L_{Φ_1} and $\|\sum_{n=1}^{\infty} \Theta_n^2\|_{\Phi_1} \le a^2$. From the inequality $E^2(\Theta_n \mid \mathcal{F}_n) \le E(\Theta_n^2 \mid \mathcal{F}_n)$ we deduce that

(3.4)
$$E\left(\Phi_{1}\left[p^{-1}a^{-2}\sum_{n=1}^{\infty}E^{2}\left(\Theta_{n}\mid\mathcal{F}_{n}\right)\right]\right) \leq \\ \leq E\left(\Phi_{1}\left[p^{-1}a^{-2}\sum_{n=1}^{\infty}E\left(\Theta_{n}^{2}\mid\mathcal{F}_{n}\right)\right]\right)$$

holds. On the other hand using the convexity inequality of Burkholder-Davis-Gundy (see [3]) we can write (remarking that the power of Φ_1 is finite)

$$(3.5) \quad E\Big(\Phi_1\left[p^{-1}a^{-2}\sum_{n=1}^{\infty}E(\Theta_n^2\mid\mathcal{F}_n)\right]\Big)\leq E\Big[\Phi_1(a^{-2}\sum_{n=1}^{\infty}\Theta_n^2)\Big].$$

Combining (3.3), (3.4) and (3.5) we have

$$E\Big[\Phi_1\Big(p^{-1}a^{-2}\sum_{n=1}^{\infty}[E(\Theta_n\mid\mathcal{F}_n)]^2\Big)\Big]\leq 1$$

In the language of Φ this can be written in the form

$$E\left[\Phi\left(p^{-1/2}a^{-1}\left[\sum_{n=1}^{\infty}E^{2}(\Theta_{n}\mid\mathcal{F}_{n})\right]^{1/2}\right)\right] =$$

$$=E\left(\Phi_{1}\left[p^{-1}a^{-2}\sum_{n=1}^{\infty}E^{2}(\Theta_{n}\mid\mathcal{F}_{n})\right]\right) \leq 1.$$

This means that

$$\left[\sum_{n=1}^{\infty}E^{2}(\Theta_{n}\mid\mathcal{F}_{n})
ight]^{1/2}\in L_{\Phi}$$

and

$$\|\left[\sum_{n=1}^{\infty} E^{2}(\Theta_{n} \mid \mathcal{F}_{n})\right]^{1/2}\|_{\Phi} \leq \sqrt{p} \cdot a = \sqrt{p}\|\left(\sum_{n=1}^{\infty} \Theta_{n}^{2}\right)^{1/2}\|_{\Phi}.$$

Then we can estimate (3.2) as follows

$$(3.6) \qquad |\Lambda(\Theta)| \leq \sqrt{p} \cdot B \| (\sum_{n=1}^{\infty} \Theta_n^2)^{1/2} \|_{\Phi}, \ \forall \Theta \in \widehat{\delta} \mathcal{X}_{\Phi}.$$

We use the Orlicz norm to estimate the L_{Ψ} -norm of $(\sum_{n=1}^{\infty} \sigma_n^2)^{1/2}$.

Denote
$$\gamma^2 = \sum_{n=1}^{\infty} \sigma_n^2$$
. Then
$$\|\gamma\|_{\Psi} = \sup_{E \; \Phi \; (|X|) \leq 1} \; E(X\gamma)$$

Define

$$Y = \begin{cases} X\gamma^{-1}, & \text{if } \gamma \neq 0 \\ 0, & \text{if } \gamma = 0. \end{cases}$$

Consider the element $\Theta^{(n)} = (Y\sigma_1, \ldots, Y\sigma_n, 0, 0, \ldots)$. Obviously, $\Theta^{(n)} \in \widehat{\delta} \mathcal{X}$ and $\|\Theta^{(n)}\|_{\widehat{\delta} \mathcal{X}_{\bullet}} \leq 1$, since

$$E\Big(\Phi\Big[(\sum_{i=1}^n Y^2\sigma_i^2)^{1/2}\Big]\Big) \leq E[\Phi(\mid X\mid)] \leq 1.$$

We can write

$$egin{aligned} E(X\gamma) = & E(Y\gamma^2) = \sum_{i=1}^n E(Y\sigma_i^2) = \ & = \sum_{i=1}^n E\Big[E(Y\sigma_i \mid \mathcal{F}_i)\sigma_i\Big] = \Lambda(\Theta^{(n)}). \end{aligned}$$

Using (3.6) we have

$$|E(X\gamma)| = |\Lambda(\Theta^{(n)})| \le \sqrt{p} \cdot B \|\Theta^{(n)}\|_{\widehat{\delta}\chi_{\bullet}} \le \sqrt{p} \cdot B.$$

Consequently,

$$\|\gamma\|_{\Psi} \leq \sqrt{p} \cdot B$$

and, letting $n \to +\infty$, finally we have

$$\|(\sum_{n=1}^{\infty}\sigma_n^2)^{1/2}\|_{\Psi}\leq \sqrt{p}\cdot B.$$

For arbitrary $\Theta = (\Theta_1, \Theta_2, \ldots) \in \delta \mathcal{H}_{\Phi}$ define the element

$$\bar{\Theta} = (0, \Theta_1, \Theta_2, \ldots) \in \delta \mathcal{X}_{\Phi}$$

and consider the functional $\bar{\Lambda}$ defined by the formula

$$ar{\Lambda}(\Theta) = \Lambda(ar{\Theta}), \quad orall \Theta \in \delta \mathcal{X}_{\Phi} \,.$$

Then $\bar{\Lambda}$ is also a bounded and linear functional on $\delta \mathcal{H}_{\Phi}$ since

$$|\bar{\Lambda}(\Theta)| = |\Lambda(\bar{\Theta})| \le B \|\bar{\Theta}\|_{\delta X_{\bullet}} = B \|\Theta\|_{\delta X_{\bullet}}$$

As we have shown above, there exists $\mu=(\mu_n)_{n\geq 1}\in \delta\mathcal{H}_{\Psi}$ satisfying $\|(\sum_{n=1}^{\infty}\mu_n^2)^{1/2}\|_{\Psi}\leq \sqrt{p}\cdot B$ such that

(3.7)
$$\bar{\Lambda}(\Theta) = \sum_{n=1}^{\infty} E(\Theta_n \mu_n).$$

But

(3.8)
$$\bar{\Lambda}(\Theta) = \Lambda(\bar{\Theta}) = \sum_{n=1}^{\infty} E(\Theta_n \sigma_{n+1}) = \sum_{n=1}^{\infty} E\left[\Theta_n \cdot E(\sigma_{n+1} \mid \mathcal{F}_n)\right].$$

From (3.7) and (3.8) we deduce that

$$E(\sigma_{n+1} \mid \mathcal{F}_n) = \mu_n$$
 a.s.

This implies

functions.

$$\begin{split} &\| \Big[\sum_{n=0}^{\infty} (\sigma_{n+1} \mid \mathcal{F}_n) \Big]^{1/2} \|_{\Psi} \leq \| \mid E(\sigma_1 \mid \mathcal{F}_0) \mid + \\ &\Big[\sum_{n=1}^{\infty} E^2(\sigma_{n+1} \mid \mathcal{F}_n) \Big]^{1/2} \|_{\Psi} \leq B + \sqrt{p} \cdot B = (\sqrt{p} + 1) B. \end{split}$$

Therefore, the proof is complete.

Now we present the main result which we formulate in **Theorem 3.2.** Let (Φ, Ψ) be a pair of conjugate Young

a/ For every $X \in \mathcal{X}_{\Phi}$, $Y \in \mathcal{X}_{\Psi}$ we have for arbitrary $n \geq 1$

$$\mid E(X_n Y_n) \mid \leq 2 ||X_n||_{\mathcal{N}_{\bullet}} ||Y_n||_{\mathcal{N}_{\bullet}}.$$

Further, $\lim_{n \to +\infty} E(X_n, Y_n)$ exists, it is finite and

$$\left|\lim_{n\to+\infty}E(X_nY_n)\right|\leq 2\|X\|_{\aleph_{\bullet}}\|Y\|_{\aleph_{\bullet}}.$$

b/ Suppose that Φ has the form $\Phi(x) = \Phi_1(x^2)$, where $\Phi_1(x)$ itself is a Young function having finite power p. If F is a bounded and linear functional on \mathcal{H}_{Φ} , i.e.

$$|F(x)| \leq B||X||_{X_{\bullet}}$$
 $(B > 0 \text{ constant})$

then there exists $Y \in \mathcal{H}_{\Psi}$ such that $\|Y\|_{\mathcal{N}_{\bullet}} \leq \sqrt{2}(2\sqrt{p}+1)B$ and

$$\lim_{n\to +\infty} E(X_n Y_n) = F(X), \quad \forall x\in \mathcal{H}_{\Phi}.$$

Proof. a/ For any $X \in \mathcal{H}_{\Phi}$, $Y \in \mathcal{H}_{\Psi}$ denote $\triangle X_i = X_i - X_{i-1}$, $i = 1, 2, \ldots$; $\triangle Y_j = Y_j - Y_{j-1}$, $j = 1, 2, \ldots$ The Cauchy-Schwartz inequality gives

$$\left(\sum_{i=1}^{n} \triangle X_{i} \triangle Y_{i}\right)^{2} \leq \left[\sum_{i=1}^{n} (\triangle X_{i})^{2}\right] \left[\sum_{i=1}^{n} (\triangle Y_{i})^{2}\right]$$

and from this by Hölder's inequality for conjugate Young functions

$$|E(X_{n}Y_{n})| = |\sum_{i=1}^{n} E(\triangle X_{i} \triangle Y_{i})| = |E(\sum_{i=1}^{n} \triangle X_{i} \triangle Y_{i})| \le$$

$$\leq E([\sum_{i=1}^{n} (\triangle X_{i})^{2}]^{1/2} [\sum_{j=1}^{n} (\triangle Y_{j})^{2}]^{1/2}) \le$$

$$\leq 2 ||\sum_{i=1}^{n} (\triangle X_{i})^{2}|^{1/2} ||_{\Phi} ||\sum_{j=1}^{n} (\triangle Y_{j})^{2}|^{1/2} ||_{\Psi}.$$

It is easy to see that $[E(X_n Y_n)]_{n\geq 1}$ is a Cauchy sequence, since for $m\geq n$ we have

$$|E(X_m Y_m) - E(X_n Y_n)| = |E(\sum_{i=n+1}^m \triangle X_i \triangle Y_i)| \le$$

$$\leq 2 \|\left[\sum_{i=n+1}^m (\triangle X_i)^2\right]^{1/2} \|_{\Phi} \|\left[\sum_{i=n+1}^m (\triangle Y_i)^2\right]^{1/2} \|_{\Psi} \to 0$$

as $n \to +\infty$. Therefore $\lim_{n \to +\infty} E(X_n Y_n)$ exists and

$$\left|\lim_{n\to+\infty}E(X_nY_n)\right|\leq 2\|X\|_{\mathcal{N}_{\bullet}}\|Y\|_{\mathcal{N}_{\bullet}}.$$

b/ Suppose that F is a linear functional on \mathcal{X}_{Φ} such that

$$| F(X) | \leq B ||X||_{\mathcal{N}_{\Phi}}, \quad \forall X \in \mathcal{N}_{\Phi}.$$

Then \mathcal{H}_{Φ} can be inbedded in the space $\delta \mathcal{H}_{\Phi}$ and the definition of F can be extended onto $\delta \mathcal{H}_{\Phi}$ with the same bound as that of F. By Lemma 3.1. there exists $\sigma = (\sigma_n)_{n \geq 1} \in \delta \mathcal{H}_{\Psi}$ such that

$$F(X) = \sum_{n=1}^{\infty} E(\triangle X_n \sigma_n).$$

Consider the martingale

$$Y_n = \sum_{i=1}^n \Big[\sigma_i - E(\sigma_i \mid \mathcal{F}_{i-1}) \Big].$$

Then $(Y_n)_{n\geq 1}$ is a Cauchy sequence in \mathcal{X}_{Ψ} , since

$$||Y_{m} - Y_{n}||_{\mathcal{Y}_{\bullet}} = ||\sum_{i=n+1}^{m} (\triangle Y_{i})^{2}|^{1/2}||_{\Psi} \leq$$

$$\leq \sqrt{2} \Big(||\sum_{i=n+1}^{m} \sigma_{i}^{2}|^{1/2}||_{\Psi} + ||\sum_{i=n+1}^{m} E^{2} (\sigma_{i} \mid \mathcal{F}_{i-1})|^{1/2}||_{\Psi} \Big) \to 0$$

So, Y_n must converge to

$$Y = \sum_{i=1}^{\infty} [\sigma_i - E(\sigma_i \mid \mathcal{F}_{i-1})]$$

belonging to \mathcal{Y}_{Ψ} . Finally,

$$||Y||_{\mathcal{N}_{\bullet}} \leq \sqrt{2} \Big(||(\sum_{i=1}^{\infty} \sigma_{i}^{2})^{1/2}||_{\Psi} + ||[\sum_{i=1}^{\infty} E^{2} (\sigma_{i} \mid \mathcal{F}_{i-1})]^{1/2}||_{\Psi} \Big) \leq$$

$$\leq \sqrt{2} [\sqrt{p}B + (\sqrt{p}+1)B] = \sqrt{2} (2\sqrt{p}+1)B.$$

This completes the proof.

The BMO-space and the K_{Φ} -spaces

In this section we present the connection between the BMO-space and the \mathcal{K}_{Φ} -spaces. We show that the BMO-space can be approximated in some sense by the class of the \mathcal{K}_{Φ} -spaces. We recall some definitions.

DEFINITION 4.1.

a/ Let $X \in L_1$. Consider the martingale $X_n = E(X \mid \mathcal{F}_n), \ n \geq 0, \ x_0 = 0$ a.s. We say that X belongs to BMO iff

$$\sup_{n>1} ||E(|X-X_{n-1}||\mathcal{F}_n)||_{\infty} < +\infty.$$

b/ Let Φ be a Young function and let $X \in L_1$. Consider the set

$$\Gamma_X^{\Phi} = \{ \gamma : \gamma \in L_{\Phi}, \ E(\mid X - X_{n-1} \mid \mathcal{F}_n) \leq E(\gamma \mid \mathcal{F}_n) \ \text{a.s.}, \ \forall n \geq 1 \}.$$

We say that $X \in \mathcal{K}_{\Phi}$ iff Γ_X^{Φ} is non empty and in this case we set

$$\|X\|_{\mathcal{K}_{\bullet}} = \inf_{\gamma \in \Gamma_{\bullet}^{\bullet}} \|\gamma\|_{\Phi}$$

The following theorem shows that the K_{Φ} -space is the direct generalization of BMO.

Theorem 4.1. Let (Φ, Ψ) be a pair of conjugate Young functions. Suppose that Ψ has finite power q. Then $X \in \mathcal{K}_{\Phi}$ if and only if $\beta^* = \sup_{n \geq 1} E(|X - X_{n-1}| \mathcal{F}_n) \in L_{\Phi}$ and

$$||X||_{\mathcal{K}_{\bullet}} \leq ||\beta^*||_{\Phi} \leq q||X||_{\mathcal{K}_{\bullet}}.$$

Proof. If $\beta^* \in L_{\Phi}$ then $E(\mid X - X_{n-1} \mid \mid \mathcal{F}_n) \leq E(\beta^* \mid \mathcal{F}_n)$ a.s. Consequently, $X \in \mathcal{K}_{\Phi}$ and $\|X\|_{\mathcal{K}_{\Phi}} \leq \|\beta^*\|_{\Phi}$.

Conversely, suppose that $X \in \mathcal{K}_{\Phi}$. Then for all $n \geq 1$ we have

$$E(\mid X - X_{n-1} \mid \mid \mathcal{F}_n) \leq E(\gamma \mid \mathcal{F}_n)$$
 a.s.,

where $\gamma \in \Gamma_X^{\Phi}$ is arbitrary. Let $\gamma^* = \sup_{n \geq 1} E(\gamma \mid \mathcal{F}_n)$. Then by the maximal lemma (see [9]) $\gamma^* \in L_{\Phi}$ and

$$\|\gamma^*\|_{\Phi} \leq q \sup_{n\geq 1} \|E(\gamma \mid \mathcal{F}_n)\|_{\Phi} \leq q \|\gamma\|_{\Phi}.$$

On the other hand

$$\beta^* = \sup_{n>1} E(\mid X - X_{n-1} \mid \mid \mathcal{F}_n) \leq \gamma^*$$

This implies that $\beta^* \in L_{\Phi}$ and

$$\|\beta^*\|_{\Phi} \leq \|\gamma^*\|_{\Phi} \leq q\|\gamma\|_{\Phi}$$

Since the above inequality holds for every γ belonging to Γ_X^{Φ} we deduce that

$$\|\beta^*\|_{\Phi} \leq q\|X\|_{\mathcal{K}_{\Phi}}.$$

This completes the proof.

Theorem 4.2. Let Y denote the class of all Young functions Ψ whose conjugate Young function Φ has finite power. Then

$$BMO = \bigcap_{\Psi \in \mathcal{Y}} \mathcal{K}_{\Psi} .$$

Proof. Obviously, BMO $\subset \bigcap_{\Psi \in \mathcal{Y}} \mathcal{K}_{\Psi}$. Now we suppose that $Y \not\in BMO$. This means that $\beta^* = \sup_{n \geq 1} E(|Y - Y_{n-1}| | \mathcal{F}_n) \not\in L_{\infty}$.

We can suppose that $P(\beta^* < +\infty) = 1$, since in the contrary case $\beta^* \notin L_{\Psi}$ whatever be the Young function Ψ . Denote $a_n = P(\beta^* \ge n)$. Then $a_n > 0$ and $a_n \downarrow 0$ as $n \to +\infty$. We define the function

$$\Psi(x) = \int\limits_0^x \psi(t) dt$$

as follows: let $\psi(0) = 0$, $\psi(1) = 2/a_{2^2}, \ldots, \psi(n) = 2/a_{(n+1)^2}, \ldots$. Further, let $\psi(t)$ be linear in every interval [n, n+1]. Consequently, $\Psi(x)$ is a Young function. We shall show that $\beta^* \notin L_{\Psi}$. For each positive integer $k \geq 1$ we have

$$E[\Psi(k^{-1}\beta^*)] \ge E[\Psi(k^{-1}\beta^*)\chi(\beta^* \ge k^2)] \ge$$

 $\ge \Psi(k)P(\beta^* \ge k^2) = \Psi(k)a_{k^2}$

By the definition of Ψ we can write

$$\Psi(k) = \int\limits_0^k \psi(t)dt \geq \int\limits_{k-1}^k \psi(t)dt \geq \psi(k-1) = 2/a_{k^2} \; .$$

Therefore,

$$E[\Psi(k^{-1}\beta^*)] \geq \Psi(k)a_{k^2} \geq (2/a_{k^2})a_{k^2} = 2.$$

This means that $\beta^* \notin L_{\Psi}$ and by Theorem 4.1. $Y \notin \mathcal{K}_{\Psi}$ provided that Φ has finite power.

Now, if the conjugate Young function Φ of the function Ψ has infinite power, then remarking that $\sup_{0 < x \le 1} [\varphi(2x)/\varphi(x)] = a < +\infty$ we can define another function φ_1 as follows:

$$arphi_1(x) = egin{cases} arphi(x) & ext{if } 0 \leq x \leq 1. \ arphi(x) & ext{if } arphi(x) \leq aarphi(x/2) ext{ and } 2^i < x \leq 2^{i+1}, \ arphi(x/2) & ext{if } arphi(x) > aarphi(x/2) ext{ and } 2^i < x \leq 2^{i+1}, \end{cases}$$

i = 0, 1, ... and

$$\Phi_1(x)=\int\limits_0^xarphi_1(t)dt\;.$$

Obviously, Φ_1 has finite power and $\Phi_1(x) \leq \Phi(x)$, since $\varphi_1(x) \leq \varphi(x)$. This also implies that $\Psi_1(x) \geq \Psi(x)$, where $\Psi_1(x)$ is the conjugate function of the function $\Phi_1(x)$. Consequently, $\beta^* \notin L_{\Psi_1}$ which means that $Y \notin \bigcap_{\Psi \in \mathcal{Y}} \mathcal{K}_{\Psi}$

This proves the assertion.

References

- [1] BASSILY, N. L. and MOGYORÓDI, J., On the K_Φ-spaces with general Young function Φ. Annales Univ.Sci. Budapest, Sectio Mathematica, 27(1985), 205-214.
- [2] DAM, B. K., The dual space of the martingale Hardy space with general Young function. Analysis Mathematica. Publishing House of the Hungarian Academy of Science (to appear).
- [3] BURKHOLDER, D. L., DAVIS, B. J. and GUNDY, R. F., Integral inequalities for convex functions of operators on martingales. Proc.Sixth Berkeley Symposium on Math.Stat. and Probability, Univ. of California Press (1972), 223-240.

- [4] FEFFERMAN, C., Characterizations of bounded mean oscillation. Bulletin Amer.Math.Soc. 77(1971), 587-588.
- [5] GARSIA, A. M., Martingale inequalities. Benjamin, Reading, Massachusetts, 1973.
- [6] KRASNOSELSKII, M. K. and RUTICKII, Y. B., Convex functions and Orlicz spaces (translated from Russian by L.F. Boron), Noordhoff, Greningen, 1961.
- [7] MOGYORÓDI, J., Linear functionals on Hardy spaces, Annales Univ.Sci. Budapest, Sectio Mathematica, 26(1983), 161-174.
- [8] NEVEU, J., Discrete parameter martingales, North Holland, Amsterdam, 1975.
- [9]MOGYORÓDI, J. and MÓRI, T. F., Necessary and sufficient condition for the maximal inequality of convex Young functions. *Acta Sci.Math.* Szeged, 45(1983), 325-332.

(Received November 13, 1987)

BUI KHOI DAM